K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

Mới học lớp 5, chưa có biết nha.

21 tháng 12 2019

Giup mk ik ^_^

mk dang can lam

22 tháng 12 2019

Ta có A=1+32+33+34+........+ 314+315

=> A= (1+32)+ 33(1+32)+35(1+32)+37(1+32)+......+314(1+32)

<=>A=10(32+35+37+.......+314) chia hết cho 5

Vậy A chia hết cho 5

12 tháng 11 2017

Bài 1:Ta có:315+314=314.3+314=314.4 chia hết cho 4

Bài 2:a,\(3A=3+3^2+3^3+...........+3^{2016}\)

\(\Rightarrow3A-A=\left(3+3^2+.......+3^{2016}\right)-\left(1+3+.......+3^{2015}\right)\)

\(\Rightarrow2A=3^{2016}-1\Rightarrow A=\frac{3^{2016}-1}{2}\)

b,Ta có:A=1+3+32+33+.............+32015

=(1+3)+(32+33)+...............+(32014+32015)

=4+32.4+................+32014.4

=4.(1+32+.........+32014) chia hết cho 4

12 tháng 11 2017
giúp mình nhé. câu trả lời đúng nhất sẽ đc k mình sẽ k cho ng nhanh nhất ,thời gian sẽ là lúc 8:30
2 tháng 11 2016

Bài 2:

\(x^5=x^3\)

\(\Rightarrow x^5-x^3=0\)

\(\Rightarrow x^3\left(x^2-1\right)=0\)

\(\Rightarrow x^3=0\) hoặc \(x^2-1=0\)

+) \(x^3=0\Rightarrow x=0\)

+) \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\) hoặc \(x=-1\)

Vậy \(x\in\left\{0;1;-1\right\}\)

2 tháng 11 2016

mình chả hiểu

 

12 tháng 10 2015

A = 2 + 22 + 23 + ... + 220

A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 217 + 218 + 219 + 220 )

A = 2(1+2+22+23) + 25(1+2+22+23) + ... + 217(1+2+22+23)

A = 15.(2+25+...+217) chia hết cho 5

=> đpcm

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

6 tháng 12 2015

a giải luôn cho e nhé

7A=7+72+73+...+72008

7A-A=[7+72+73+...+72008]-[1+7+72+..+72007]

6A=72008-1

A=72008-1/6

b,Tương tư nhân B vs 4 là ra

6 tháng 12 2015

Mình chỉ trả lời được 2 câu đầu thôi nhé:

a.A= \(1+7+7^2+7^3+...+7^{2007}\)

A.7 = \(7+7^2+7^3+7^4+...+7^{2008}\)

A7-A = \(\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)

A6 =\(7^{2008}-1\)

\(\Rightarrow A=7^{2008}-1\)

Câu còn lại làm tương tự bạn nhé