Cho x^2 + y^2= 17x^22+y^22=17 và xy = 7xy=7, giá trị của (x - y)^2(x−y)2 là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: =>-2x-x+17=34+x-25
=>-3x+17=x+9
=>-4x=-8
hay x=2
b: =>17x+16x+27=2x+43
=>33x+27=2x+43
=>31x=16
hay x=16/31
c: =>-2x-3x+51=34+2x-50
=>-5x+51=2x-16
=>-7x=-67
hay x=67/7
e: 3x-32>-5x+1
=>8x>33
hay x>33/8
a.\(x^2+xy+x=x\left(x+y+1\right)=77\left(77+22+1\right)=77.100=7700\)
b.\(x\left(x-y\right)+y\left(y-x\right)=\left(x-y\right)^2=\left(53-3\right)^2=50^2=2500\)
1: \(A=2x^3y^4-5x\cdot x^2y^4+xy^2\cdot x^2y^2=-2x^3y^4=-2\cdot\left(-1\right)^3\cdot\dfrac{1}{16}=\dfrac{1}{8}\)
2: \(B=9x^4y^6\cdot\left(-4xy\right)+19x^3y^5\cdot\left(-2\right)x^2y^2\)
\(=-36x^5y^7-38x^5y^7\)
\(=-74x^5y^7=-74\cdot\left(-1\right)^5\cdot2^7=9472\)
3: \(f\left(-1\right)=3\cdot\left(-1\right)^4+7\cdot\left(-1\right)^3+4\cdot\left(-1\right)^2-2\cdot\left(-1\right)-2=0\)
\(f\left(1\right)=3+7+4-2-2=10\)
y1 và y2 lần lượt bằng 8 và 6
còn x1, x2 lần lượt bằng -4 và -10
tick nhóe!
ahihi
x và y là hai đại lượng tỷ lệ thuận
nên x1/y1 = x2/y2
<=> x1/x2 = y1/y2 = (y1-x1)/(y2-x2) (theo t/c của dãy tỷ số bằng nhau)
Thay số ta có:
x1/(-4) = y1/3=-2/(3-(-4))
<=> x1/(-4) = y1/3=-2/7
suy ra:
y1 = 3.(-2/7)=-6/7
\(x^2+y^2-2xy=17-2.7=3\)
\(\Rightarrow\left(x-y\right)^2=3\Rightarrow\left(x-y\right)=\pm\sqrt{3}\)