1. Tìm x sao cho :
a) x+2/x+5 < x+1/x+4
b) x-1/x-2 < x+4/x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0
(\(x-2\))2 ≥ 0 ∀\(x\); \(x+1\) = 0 ⇒ \(x=-1\); \(x-4\) = 0 ⇒ \(x=4\)
Lập bảng ta có:
\(x\) | - 1 4 |
\(x+1\) | - 0 + | + |
\(x-4\) | - | - 0 + |
(\(x-2\))2 | + | + | + |
(\(x-2\))2.(\(x+1\)).(\(x+4\)) | + 0 - 0 + |
Theo bảng trên ta có: -1 < \(x\) < 4
Vậy \(-1< x< 4\)
b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0
\(x-3=0\)⇒ \(x=3\); \(x-9\) = 0 ⇒ \(x=9\)
Lập bảng ta có:
\(x\) | 3 9 |
\(x-3\) | - 0 + | + |
\(x-9\) | - | - 0 + |
\(x^2\) | + | + | + |
\(x^2\)(\(x-3\)):(\(x-9\)) | + 0 - 0 + |
Theo bảng trên ta có: 3 < \(x\) < 9
Vậy 3 < \(x\) < 9
a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0
(\(x-2\))2 ≥ 0 ∀\(x\); \(x+1\) = 0 ⇒ \(x=-1\); \(x-4\) = 0 ⇒ \(x=4\)
Lập bảng ta có:
\(x\) | - 1 4 |
\(x+1\) | - 0 + | + |
\(x-4\) | - | - 0 + |
(\(x-2\))2 | + | + | + |
(\(x-2\))2.(\(x+1\)).(\(x+4\)) | + 0 - 0 + |
Theo bảng trên ta có: -1 < \(x\) < 4
Vậy \(-1< x< 4\)
b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0
\(x-3=0\)⇒ \(x=3\); \(x-9\) = 0 ⇒ \(x=9\)
Lập bảng ta có:
\(x\) | 3 9 |
\(x-3\) | - 0 + | + |
\(x-9\) | - | - 0 + |
\(x^2\) | + | + | + |
\(x^2\)(\(x-3\)):(\(x-9\)) | + 0 - 0 + |
Theo bảng trên ta có: 3 < \(x\) < 9
Vậy 3 < \(x\) < 9
a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0
(\(x-2\))2 ≥ 0 ∀\(x\); \(x+1\) = 0 ⇒ \(x=-1\); \(x-4\) = 0 ⇒ \(x=4\)
Lập bảng ta có:
\(x\) | - 1 4 |
\(x+1\) | - 0 + | + |
\(x-4\) | - | - 0 + |
(\(x-2\))2 | + | + | + |
(\(x-2\))2.(\(x+1\)).(\(x+4\)) | + 0 - 0 + |
Theo bảng trên ta có: -1 < \(x\) < 4
Vậy \(-1< x< 4\)
b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0
\(x-3=0\)⇒ \(x=3\); \(x-9\) = 0 ⇒ \(x=9\)
Lập bảng ta có:
\(x\) | 3 9 |
\(x-3\) | - 0 + | + |
\(x-9\) | - | - 0 + |
\(x^2\) | + | + | + |
\(x^2\)(\(x-3\)):(\(x-9\)) | + 0 - 0 + |
Theo bảng trên ta có: 3 < \(x\) < 9
Vậy 3 < \(x\) < 9
a: (x-1)(x-2)>0
=>x-2>0 hoặc x-1<0
=>x>2 hoặc x<1
b: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)
=>(x+1)(x-4)<0
=>-1<x<4
c: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)
=>x-3/x-9<0
=>3<x<9
c; \(\dfrac{5}{x}\) < 1 (đk \(x\ne\) 0)
⇒ \(\dfrac{5}{x}\) - 1 < 0 ⇒ \(\dfrac{5-x}{x}\) < 0; 5 - \(x=0\) ⇒ \(x=5\)
Lập bảng ta có:
\(x\) | 0 5 |
\(x-5\) | + | + 0 - |
\(x\) | - 0 + | + |
\(\dfrac{x-5}{x}\) | - || + 0 - |
Theo bảng trên ta có \(x\) \(\in\) ( - ∞; 0) \(\cup\) (5; +∞)
Vậy tập hợp nghiệm của bất phương trình đã cho là:
S = (- ∞; 0) \(\cup\) (5 ; + ∞)
a. \(1-2x< 7\)
mà: \(1-n\le1\)với mọi n
\(\Rightarrow2x=n\Rightarrow x=\frac{n}{2}\)với mọi n
b.để: (x-1).(x-2)>0
=> x-1>0hoặc x-2<0
=>x>1hoặc x<2
(mik chỉ làm 2 câu mẫu thôi, bạn cố gắng tự làm nha, rất vui được kết bạn với bạn)
a)\(\frac{x+2}{x+5}< \frac{x+1}{x+4}\)
\(\Leftrightarrow\frac{x+5-3}{x+5}< \frac{x+4-3}{x+4}\)
\(\Leftrightarrow1-\frac{3}{x+5}< 1-\frac{3}{x+4}\)
\(\Leftrightarrow\frac{3}{x+5}>\frac{3}{x+4}\)
\(\Leftrightarrow x+5< x+4\)
Vì \(x+5\)luôn lớn hơn x+4 với mọi x
nên không có giá trị x thỏa mãn
b) \(\frac{x-1}{x-2}< \frac{x+4}{x+3}\)
\(\Leftrightarrow\frac{x-2+1}{x-2}< \frac{x+3+1}{x+3}\)
\(\Leftrightarrow1+\frac{1}{x-2}< 1+\frac{1}{x+3}\)
\(\Leftrightarrow\frac{1}{x-2}< \frac{1}{x+3}\)
\(\Leftrightarrow x-2>x+3\)
Vì \(x+3>x-2\)với mọi x
nên không có giá trị x thỏa mãn