Chứng Minh Đẳng Thức : (x+y)^3=x^3+y^3+3xy(x+y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biến đổi vế trái thành vế phải:
(x+y)3 - (x3+y3) = x3 + 3x2y+ 3xy2 + y3 - x3 - y3
= 3x2y+ 3xy2 = 3xy( x+ y)
Vậy: (x+y)3 - (x3+y3) = 3xy(x+y)
\(VT=\dfrac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)
a) Ta có: \(\left(x+y\right)\left(x+y\right)\left(x+y\right)-3xy\left(x+y\right)\)
\(=\left(x^2+2xy+y^2\right)\left(x+y\right)-3x^2y-3xy^2\)
\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3\)
b) Ta có: \(\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+y^3-x^3+y^3\)
\(=2y^3\) (ko phải HĐT đâu nhé bn, tại mk rút gọn luôn nên nó cg samesame thế:))
Bài làm :
\(\text{a) }\left(x+y\right)\left(x+y\right)\left(x+y\right)-3xy\left(x+y\right)\)
\(=\left(x^2+2xy+y^2\right)\left(x+y\right)-3x^2y-3xy^2\)
\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3\)
=> Điều phải chứng minh
\(\text{b) }\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+y^3-x^3+y^3\)
\(=2y^3\)
=> Điều phải chứng minh
Ta phân tích mẫu:
\(x^3+2x^2y-xy^2-2y^3\)
\(=x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3\)
\(=x\left(x^2+3xy+2y^2\right)-y\left(x^2+3xy+2y^2\right)\)
\(=\left(x-y\right)\left(x^2+3xy+2y^2\right)\)
Thay vào ta có:
\(\frac{x^2+3xy+2y^2}{\left(x-y\right)\left(x^2+3xy+2y^2\right)}=\frac{1}{x-y}\)
Vậy ta có điều phải chứng minh
\(\left(x+y\right)^3=x^3+y^3+3x^2y+3xy^2=x^3+y^3+3xy\left(x+y\right)\)
\(x^3+y^3+3xy\left(x+y\right)=\left(x^3+x^2y\right)+\left(y^3+y^2x\right)+2xy\left(x+y\right)\)
\(=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+y^2+2xy\right)=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)^3\)