Tìm chữ số tận cùng của các lũy thừa tầng sau:
\(^{4^{3^{10}}}\), \(2^{2^5}\), \(2^{3^4}\), \(3^{3^3}\), \(^{9^{9^9}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C3:
Gọi UCLN(12n + 1 ; 30n + 2) là d
Ta có : 12n + 1 \(⋮\)d \(\Rightarrow\)5(12n + 1) \(⋮\)d \(\Rightarrow\)60n + 5 \(⋮\)d
30n + 2 \(⋮\)d \(\Rightarrow\)2(30n + 2) \(⋮\)d \(\Rightarrow\)60n + 4 \(⋮\)d
\(\Rightarrow\)( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d
\(\Rightarrow\)60n + 5 - 60n - 4 \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d \(\Rightarrow\)d \(\subset\){ 1 ; -1 }
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d thuộc Ư C ( 12n + 1 ; 30n + 2 ) ; d nguyên tố
=> \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)=> ( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d => 1 \(⋮\)d => d thuộc Ư ( 1 ) mà d nguyên tố => d = 1
Do đó phân số 12n+1/30n+2 tối giản với mọi n thuộc Z
Vậy phân số 12n+1/30n+2 tối giản với mọi n thuộc Z
1.
A=19^5^1^8^9^0+2^9^1^9^6^9
Ta luôn có 1a=1 với a là số nguyên dương
=>19^5^1^8^9^0=195 và 2^9^1^9^6^9=29
=>A=195+29=(192)2.19+(24)2.2=(...1)2.19+(...6)2.2=...1.19+...6.2=...1
Vậy A có tận cung là 1.
2.
B=1/3+1/32+...+1/32005
3B=1+1/3+1/32+...+1/32004
3B-B=1-1/32005
2B=1-1/32005<1
=>2B<1=>B<1/2
Vậy B<1/2.
.
.
1) Ta có:
\(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}\)
Mà 195=194+1=...1.19=...19
29=22.4+1=...6 .2=...2
=>A=...19 + ...2= ...1
Vậy A có chữ số tận cùng là 1
Ta có: 2^2009 = 2.2^2008 = 2.(2^4)^502 = 2.16^502 có tận cùng là 2
(vì 16^502 có tân cùng là 6, khi nhân với 2 thì cho chữ số tận cùng là 2)
3^2010 = (3²)1005 = 9.9^1004 = 9.81^502 có tận cùng là 9
Có \(2^{3^{9000}}=2^{3^2.\left(3^2\right)^{4499}}=\left(2^{3^2}\right)^{9^{4499}}=512^{9^{4499}}\)
=> A = \(\left(512.47\right)^{9^{4499}}+1001^{20000}=24064^{9^{4499}}+1001^{20000}\)
Ta có: \(24064^{9^{4499}}\) đồng dư với \(64^{9^{4499}}\) ( mod 1000)
+) xét: 92 đồng dư với 1 (mod 20) => 94499 = (92)2249 .9 đồng dư với 1.9 = 9 ( mod 20)
=> 94499 = 20k + 9
=> \(64^{9^{4499}}=\left(2^6\right)^{20k+9}=\left(2^{20}\right)^{6k}.2^{6.9}=\left(2^{20}\right)^{6k+2}.2^{14}\)
Mà 220 đồng dư với 576 (mod 1000) nên \(64^{9^{4499}}=\left(2^{20}\right)^{6k+2}.2^{14}\) đồng dư với 576.16384 = 9 437 184 (mod 1000)
=> \(64^{9^{4499}}\) đồng dư với 184 mod 1000
=> \(24064^{9^{4499}}\) đồng dư với 184 (mod 1000)
+) ta có: 100120 000 đồng dư với 120 000 = 1 (mod 1000)
=> A đồng dư với 184 + 1 = 185 (mod 1000)
Vậy 3 chữ số tận cùng của A là 185
3 không chia hết cho 2 nên
\(3^{5^7}\) không chia hết cho 2
Vậy A = 19992k+1
A = (19992)k.1999
A = \(\overline{...1}\)k.1999
A = \(\overline{..9}\)
Vì 6 ⋮ 2 nên \(6^{8^9}\) ⋮ 2
Vậy B = 20242k = (20242)k = \(\overline{..6}\)k = \(\overline{..6}\)
4^3^10=4^30=(4^2)^15=..........6^15=...........6
2^2^5=2^10=(2^4)^2 . 2^2=...........6^2 . ...........4=.............4
2^3^4=2^12=(2^4)^3=.............6^3=...............6
3^3^3=3^9=(3^4)^2 . 3=..............1^2 . 3=..............3
9^9^9=9^81=(9^2)^80 . 9=..............1^80 . 9=.................9