K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

\(a.A=\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\left(1+\dfrac{1}{x}\right)^2-\dfrac{2}{x}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\left(\dfrac{x+1}{x}\right)^2-2.\dfrac{x+1}{x}.\dfrac{1}{x+1}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\left(1+\dfrac{1}{x}-\dfrac{1}{x+1}\right)^2}=\left|x+\dfrac{1}{x}+\dfrac{1}{x+1}\right|\)

\(b.\) Áp dụng điều đã CM ở câu a , ta có :

\(B=\sqrt{1+\dfrac{1}{1^1}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}=1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{99}-\dfrac{1}{100}=100-\dfrac{1}{100}=\)

10 tháng 9 2018

Bạn thử tham khảo link này nha: https://olm.vn/hoi-dap/question/1294056.html

29 tháng 1 2021

a) \(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)

\(\Leftrightarrow B=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow B=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(\Leftrightarrow B=\dfrac{2-\sqrt{x}}{3\sqrt{x}}\)

b) \(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)  (*)

Thay (*) vào B , ta được : \(B=\dfrac{2-\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{-\sqrt{3}+1}{3\sqrt{3}+3}\)

 

29 tháng 1 2021

Chép sai đề r bạn ơi!

7 tháng 7 2021

\(=>A=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left[\dfrac{\sqrt{x}+1-2}{x-1}\right]\)

\(=>A=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}\)

b,\(=>\dfrac{1}{\sqrt{x}}=\dfrac{1}{2}=>\sqrt{x}=2=>x=\sqrt{2}\left(tm\right)\)

7 tháng 7 2021

\(=>x=4\left(tm\right)\)

Sửa đề: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)

a) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(=\dfrac{x-1}{x}\)

b) Sửa đề: \(2\sqrt{x+1}=5\)

Ta có: \(2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=\dfrac{5}{2}\)

\(\Leftrightarrow x+1=\dfrac{25}{4}\)

hay \(x=\dfrac{21}{4}\)(thỏa ĐK)

Thay \(x=\dfrac{21}{4}\) vào biểu thức \(P=\dfrac{x-1}{x}\), ta được:

\(P=\left(\dfrac{21}{4}-1\right):\dfrac{21}{4}=\dfrac{17}{4}\cdot\dfrac{4}{21}=\dfrac{17}{21}\)

Vậy: Khi \(2\sqrt{x+1}=5\) thì \(P=\dfrac{17}{21}\)

c) Để \(P>\dfrac{1}{2}\) thì \(P-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{2\left(x-1\right)}{2x}-\dfrac{x-1}{2x}>0\)

mà \(2x>0\forall x\) thỏa mãn ĐKXĐ

nen \(2\left(x-1\right)-x+1>0\)

\(\Leftrightarrow2x-2-x+1>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

Kết hợp ĐKXĐ, ta được: x>1

Vậy: Để \(P>\dfrac{1}{2}\) thì x>1

6 tháng 7 2021

\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\text{x > 0, x ≠ 1}\)

\(A=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)^2}\)

25 tháng 7 2023

\(a,P=\dfrac{3\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\left(dk:x\ge0,x\ne1\right)\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}-\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}+4-\sqrt{x}-1}{\sqrt{x}+2}\\ =\dfrac{\sqrt{x}+3}{\sqrt{x}+2}\)

\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)

\(\Rightarrow P=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+3}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}=\dfrac{\left|\sqrt{5}-1\right|+3}{\left|\sqrt{5}-1\right|+2}=\dfrac{\sqrt{5}-1+3}{\sqrt{5}-1+2}=\dfrac{\sqrt{5}+2}{\sqrt{5}+1}\)

a.

\(A=\left(1-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+1}\right)\)

\(=\left(\dfrac{1-\sqrt{a}}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\dfrac{1-\sqrt{a}}{\sqrt{a}}.\dfrac{2\sqrt{a}}{a-1}=\dfrac{2\left(1-\sqrt{a}\right)}{a-1}=\dfrac{-2\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{-2}{\sqrt{a}+1}\)

b.

\(a-2\sqrt{2}\rightarrow\sqrt{a}=\sqrt{2}-1\)

\(=2-2\sqrt{2}+1\)

=\(\left(\sqrt{2}-1\right)^2\)

\(\rightarrow A=\dfrac{-2}{\sqrt{2}-1+1}=\dfrac{-1}{\sqrt{2}}=\sqrt{2}\)

 

7 tháng 7 2021

=>\(A=\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right).\left(\dfrac{\sqrt{a}+1+\sqrt{a}-1}{a-1}\right)\left(a>0,a\ne1\right)\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}.\dfrac{2\sqrt{a}}{a-1}=\dfrac{2}{\sqrt{a}+1}\)

b, \(a=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\) thế vào A

\(=>A=\dfrac{2}{\sqrt{\left(\sqrt{2}-1\right) ^2}+1}=\dfrac{2}{\sqrt{2}}\)

12 tháng 4 2022

1.\(x=4\)

\(B=\left(\dfrac{x+1}{2}-\sqrt{x}\right)=\left(\dfrac{4+1}{2}-\sqrt{4}\right)=\dfrac{5}{2}--2=\dfrac{5-4}{2}=\dfrac{1}{2}\)

2.\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)=\left(\dfrac{\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

        \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\dfrac{x+1}{2}-\sqrt{x}=\dfrac{x+1-2\sqrt{x}}{2}=\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(M=A.B=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

3.\(M=\dfrac{\sqrt{x}}{6}\)

\(\Leftrightarrow\dfrac{\sqrt{x}}{6}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=6\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow x+\sqrt{x}=6\sqrt{x}-6\)

\(\Leftrightarrow x-5\sqrt{x}+6=0\)

Đặt \(\sqrt{x}=a;a\ge0\)

=> pt trở thành:

\(a^2-5a+6=0\)

\(\Delta=\left(-5\right)^2-4.6=25=24=1>0\)

=> pt có 2 nghiệm:

\(\left\{{}\begin{matrix}x_1=\dfrac{5+\sqrt{1}}{2}=3\left(tm\right)\\x_2=\dfrac{5-\sqrt{1}}{2}=2\left(tm\right)\end{matrix}\right.\)

Xét \(\sqrt{a}=3\)

\(\Leftrightarrow a=9\)

Xét \(\sqrt{a}=2\)

\(\Leftrightarrow a=4\)

Vậy \(x=9;4\)

23 tháng 12 2020

a) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)

\(=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}-\dfrac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\)

b) Ta có: \(x=3-2\sqrt{2}\)

\(=2-2\cdot\sqrt{2}\cdot1+1\)

\(=\left(\sqrt{2}-1\right)^2\)

Thay \(x=\left(\sqrt{2}-1\right)^2\) vào biểu thức \(P=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\), ta được: 

\(P=\dfrac{\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)

\(=\dfrac{\sqrt{2}-\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)

\(=\dfrac{\sqrt{2}-\sqrt{2}+1}{\sqrt{2}-1}\)

\(=\dfrac{1}{\sqrt{2}-1}\)

\(=\sqrt{2}+1\)

Vậy: Khi \(x=3-2\sqrt{2}\) thì \(P=\sqrt{2}+1\)

23 tháng 12 2020

cái x-3 ở tử phân tích kiểu j ra đc cái kia v bạn

 

14 tháng 9 2021

\(a,A=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\left(x>0;x\ne1\right)\\ A=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\\ A=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(b,\dfrac{P}{A}\left(x-1\right)=0\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\cdot\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0\left(\sqrt{x}+1>0\right)\)

14 tháng 9 2021

a) \(A=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\left(đk:x>0,x\ne1\right)\)

\(=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

b) \(\dfrac{P}{A}\left(x-1\right)=0\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}:\dfrac{\sqrt{x}+1}{\sqrt{x}}.\left(x-1\right)=0\)

\(\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-1}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow x=0\)( do \(\sqrt{x}+1\ge1>0\))(không thỏa đk)

Vậy \(S=\varnothing\)

 

21 tháng 12 2021

a: \(A=\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}-1}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-\left(\sqrt{x}-2\right)^2}{3}\)

22 tháng 12 2021

Đề bạn gõ sai, mình có sửa lại r nha

\(a,A=\dfrac{1-\sqrt{x}+1}{\sqrt{x}-1}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3}\\ x=5\Leftrightarrow A=\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{3}=\dfrac{5-2\sqrt{5}}{3}\\ c,A=-\dfrac{1}{3}\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=-1\Leftrightarrow x-2\sqrt{x}+1=0\\ \Leftrightarrow\left(\sqrt{x}-1\right)^2=0\Leftrightarrow x=1\left(ktm\right)\Leftrightarrow x\in\varnothing\)