K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Dựa vào hằng đẳng thức thứ 5: (A-B)\(^3\)=A\(^3\)-3A\(^2\)B+3AB\(^2\)-B\(^3\)

=> x\(^3\)-3x\(^2\)+3x-1=(x-1)\(^3\)

Thay x=101, ta có :

(x-1)\(^3\)= (101-1)\(^3\)=100\(^3\)=1000000

10 tháng 9 2018

101 mu 3 - 3 nhan x mu 2 cong 3x -1=101^3-3.101^2+3x-1=101-3+101

\(A=x^3+3x^2+3x+6\)

\(=x^3+3x^2+3x+1+5\)

\(=\left(x+1\right)^3+5\)

Thay x = 19 vào biểu thức \(A=\left(x+1\right)^3+5\)ta được:

\(A=\left(19+1\right)^3+5=20^3+5=8000+5=8005\)

Vậy giá trị của biểu thức A tại x = 19 là 8005.

\(B=x^3-3x^2+3x\)

\(=x^3-3x^2+3x-1+1\)

\(=\left(x-1\right)^3+1\)

Thay x = 11 vào biểu thức \(B=\left(x-1\right)^3+1\)ta được:

\(B=\left(11-1\right)^3+1=10^3+1=1000+1=1001\)

Vậy giá trị của biểu thức B tại x = 11 là 1001.

15 tháng 10 2023

1, a) 

Ta có:

\(x^2+2x+1=\left(x+1\right)^2\)

Thay x=99 vào ta có:

\(\left(99+1\right)^2=100^2=10000\)

b) Ta có:

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)

Thay x=101 vào ta có:

\(\left(101-1\right)^3=100^3=1000000\)

14 tháng 7 2016

\(B=x^3-3x^2+3x\)

\(=x^3-3x^21+3x1^2-1^3+1\)

\(=\left(x-1\right)^3+1\)

thay x=11 vào P ta đc:

\(B=\left(11-1\right)^3+1=1001\)

Vậy B=1001

7 tháng 9 2016

a) x2-y2

= (x-y)x(x+y)

=(87+13)x(87-13)

=100x74

=7400

b) x3-3x2+3x-1

=x3-3x21+3x12-13=(x-1)3

=(101-1)3

=1003

=1000000

c) x3+9x2+27x+27

=x3+3x23+3x32+33

=(x+3)3

=(97+3)3

=1003

=1000000

Bài cũn dễ mà banh

 

22 tháng 7 2023

\(...=A=x^3-3x^2+3x-1+1013\)

\(A=\left(x-1\right)^3+1013=\left(11-1\right)^3+1013=1000+1013=2013\)

\(...B=x^3-6x^2+12x-8-100\)

\(B=\left(x-2\right)^3-100=\left(12-2\right)^3-100=1000-100=900\)

\(...C=\left(x-2y\right)^3=\left(-2y-2y\right)^3=\left(-4y\right)^3=-64y^3\)

\(...D=x^3+9x^2+27x+9+2018\)

\(D=\left(x+3\right)^3+2018=\left(-23+3\right)^3+2018=-8000+2018=-5982\)

22 tháng 7 2023

a) \(A=x^3-3x^2+3x+1012\)

\(A=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1+1013\)

\(A=\left(x-1\right)^3+1013\)

Thay x=11 vào A ta có:

\(A=\left(11-1\right)^3+1013=10^3+1013=1000+1013=2013\)

b) \(B=x^3-6x^2+12x-108\)

\(B=x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-8-100\)

\(B=\left(x-2\right)^3-100\)

Thay x=12 vào B ta có:

\(B=\left(12-2\right)^3-100=10^3-100=1000-100=900\)

c) \(C=x^3+6x^2y+12xy^2+8y^3\)

\(C=x^3+3\cdot2y\cdot x^2+3\cdot\left(2y\right)^2\cdot x+\left(2y\right)^3\)

\(C=\left(x+2y\right)^3\)

Thay x=-2y vào C ta được:

\(C=\left(-2y+2y\right)^3=0^3=0\)

d) \(D=x^3+9x^2+27x+2027\)

\(D=x^3+3\cdot3\cdot x^2+3\cdot3^2\cdot x+27+2000\)

\(D=\left(x+3\right)^3+2000\)

Thay x=-23 vào D ta có:

\(D=\left(-23+3\right)^3+2000=\left(-20\right)^3+2000=-8000+2000=-6000\)

7 tháng 7 2016

x3 - 3x2 + 3x - 1

=x3-2x2+x-x2+2x-1

=x(x2-2x+1)-(x2-2x+1)

=(x-1)(x2-2x+1)

=(x-1)(x-1)(x-1

=(x-1)3.Thay x=101 vào ta được (101-1)3=1003=1 000 000

15 tháng 8 2020

với x=11

15 tháng 8 2020

Bài làm:

Ta có: Tại x = 11 thì giá trị của B là

\(B=x\left(x^2-3x+3\right)=11\left(11^2-3.11+3\right)\)

\(=11.91=1001\)

Bài 2: 

a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)

b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)