Tìm x, biết:
(2/3 x - 4/9) . (1/2 + 3/7 : x) = 0
Tính:
1313/1515 + (-1011/5055)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
=1-1+1-1=0
3:
a: =>34*(100+1)/2:a=17
=>a=101
b: =>5/3(x-1/2)=5/4
=>x-1/2=5/4:5/3=3/4
=>x=5/4
1a, \(\dfrac{2005}{2001}\) = 1+\(\dfrac{4}{2001}\); \(\dfrac{2009}{2005}\)=1+\(\dfrac{4}{2005}\)vì\(\dfrac{4}{2001}\)>\(\dfrac{4}{2005}\)nên\(\dfrac{2005}{2001}\)>\(\dfrac{2009}{2005}\)
1b,\(\dfrac{1313}{1515}\)=\(\dfrac{1313:101}{1515:101}\)= \(\dfrac{13}{15}\); \(\dfrac{131313}{151515}\)=\(\dfrac{131313:10101}{151515:10101}\)=\(\dfrac{13}{15}\)
Vậy \(\dfrac{13}{15}\)=\(\dfrac{1313}{1515}\)=\(\dfrac{131313}{151515}\)
a: =>x+7/4=6:2/3=9
=>x=29/4
b: =>x:5/3=7/5
=>x=7/5*5/3=7/3
c:=>x+1/6=5/3
=>x=10/6-1/6=3/2
d: =>x+4/5=4/5+3/7+3/5
=>x=3/7+3/5=36/35
e: =>x/35=4/5-5/7=3/35
=>x=3
f: =>13/28+x=1/2
=>x=1/28
g: =>1/3-x=1/9
=>x=2/9
Lúc nãy, cô còn dạy học nên giờ cô mới giảng cho em được nhé.
B = (1 - \(\dfrac{1}{2}\))\(\times\)(1 - \(\dfrac{1}{3}\))\(\times\)(1 - \(\dfrac{1}{4}\))\(\times\)(1-\(\dfrac{1}{5}\))\(\times\)...\(\times\)(1- \(\dfrac{1}{2003}\))\(\times\)(1-\(\dfrac{1}{2004}\))
B = \(\dfrac{2-1}{2}\)\(\times\)\(\dfrac{3-1}{3}\)\(\times\)\(\dfrac{4-1}{4}\)\(\times\)\(\dfrac{5-1}{5}\)\(\times\)...\(\times\)(\(\dfrac{2003-1}{2003}\))\(\times\)(\(\dfrac{2004-1}{2004}\))
B = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\)\(\times\)\(\dfrac{3}{4}\)\(\times\)\(\dfrac{4}{5}\)\(\times\)...\(\times\)\(\dfrac{2002}{2003}\)\(\times\)\(\dfrac{2003}{2004}\)
B = \(\dfrac{2\times3\times4\times...\times2003}{2\times3\times4\times...\times2003}\)\(\times\) \(\dfrac{1}{2004}\)
B = \(\dfrac{1}{2004}\)
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
Tìm x :
\(\left(\dfrac{2}{3}x-\dfrac{4}{9}\right).\left(\dfrac{1}{2}+\dfrac{3}{7}:x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(\dfrac{2}{3}x-\dfrac{4}{9}\right)=0\\\left(\dfrac{1}{2}+\dfrac{3}{7}:x\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=\dfrac{4}{9}\\\dfrac{3}{7}:x=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{6}{7}\end{matrix}\right.\)
Vậy.....
Tính :
\(\dfrac{1313}{1515}+\left(-\dfrac{1011}{5055}\right)=\dfrac{13}{15}-\dfrac{1}{5}=\dfrac{2}{3}\)