K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

\(A=\left(\frac{1}{5}\right)^1+\left(\frac{1}{5}\right)^{^2}+...+\left(\frac{1}{5}\right)^{2015}\)

\(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\)

\(5A=5\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\right)\)

\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\)

\(\Rightarrow5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\right)\)

\(\Rightarrow4A=1-\frac{1}{5^{2015}}\)

\(\Rightarrow A=\frac{1-\frac{1}{5^{2015}}}{4}\)

Vì \(1-\frac{1}{5^{2015}}<1\Rightarrow A=\frac{1-\frac{1}{5^{2015}}}{4}<\frac{1}{4}\)

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)

21 tháng 10 2016

\(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\)

=>\(5A=1+\frac{1}{5}+...+\frac{1}{5^{2014}}\)

=>\(5A-A=\left(1+\frac{1}{5}+...+\frac{1}{5^{2014}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\right)\)

=>\(4A=1-\frac{1}{5^{2015}}\)

=>\(A=\frac{1-\frac{1}{5^{2015}}}{4}\)

Dễ thấy \(1-\frac{1}{5^{2015}}< 1\Rightarrow\frac{1-\frac{1}{5^{2015}}}{4}< \frac{1}{4}\Rightarrow A< \frac{1}{4}\)

16 tháng 10 2019

A<1/4

10 tháng 5 2016

A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)

A=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)

A=\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2015.2016}\right)\)

A=\(\frac{1}{4}-\frac{1}{2015.2016.2}\)\(\Rightarrow A<\frac{1}{4}\)

12 tháng 5 2021

Tính nhanh 5/8+5/24+5/48+......+5/9800

3 tháng 4 2024

17 tháng 2 2018

\(S=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2014}{5^{2014}}\)
\(5S=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2014}{5^{2013}}\)
\(\Rightarrow5S-S=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}\)
\(S=\frac{1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}}{4}\)
Xét \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)
\(5A-A=1-\frac{1}{5^{2013}}\Leftrightarrow A=\frac{1-\frac{1}{5^{2013}}}{4}=\frac{1}{4}-\frac{1}{4.5^{2013}}\)
\(\Rightarrow S=\frac{1+\frac{1}{4}-\left(\frac{1}{4.5^{2013}}+\frac{2014}{5^{2014}}\right)}{4}=\frac{5}{16}-\frac{\frac{1}{4.5^{2013}}+\frac{2014}{5^{2014}}}{4}< \frac{1}{3}\)

 

@tran trung hieu ban lam dc chx