K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

Cái này bạn tích chéo lên là ra chứ có gì đâu ( dựa vào ad<bc)

19 tháng 6 2017

Đề thiếu dữ kiện bạn ạ !

2 tháng 7 2018

2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)

Dấu "=" xảy ra <=> a = b = c

30 tháng 12 2015

CHTT nha bạn !

6 tháng 10 2017

bài 1:

\(\frac{2x+5}{x+7}=\frac{3}{4}\)

<=> 4.(2x+5) = 3.(x+7)

<=> 8x+20 = 3x+21

<=> 8x - 3x = 21 - 20

<=> 5x = 1 

<=> x = \(\frac{1}{5}\) hay x= 0,2

Đ/S : x=0,2

Bài 2:

có \(\frac{a}{b}=\frac{c}{d}\)

<=> ad=bc

Ta cần cm : \(\frac{a}{a-b}=\frac{c}{c-d}\)

hay a(c-d) = c(a-b)

khai triển có: ac - ad = ac - cb

Có ac=ac (1)

ad=cb (2)

Từ (1) va (2) => ac-ad = ac- cb

=> \(\frac{a}{a-b}=\frac{c}{c-d}\)

=> ĐPCM

6 tháng 10 2017

Thank you very much ! Lần sau nhớ giúp mình  nữa nhé. 

29 tháng 1 2020

Ta có:

\(\left(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\right)\left[\left(b+2c\right)+\left(c+2a\right)+\left(a+2b\right)\right]\)

\(\ge\left[\sqrt{\frac{a^2}{b+2c}.\left(b+2\right)}+\sqrt{\frac{b^2}{c+2a}.\left(c+2a\right)}+\sqrt{\frac{c^2}{a+2b}.\left(a+2b\right)}\right]^2\)

\(=\left(a+b+c\right)^2\)

\(\Rightarrow\left(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\right)\left[3\left(a+b+c\right)\right]\ge\left(a+b+c\right)^2\)

\(\Rightarrow\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\ge\frac{a+b+c}{3}\left(đpcm\right)\)

9 tháng 5 2019

Ta có a>0;b>0\(\Leftrightarrow\)\(\left(a+b\right)\left(a-b\right)^2\ge0\)(dấu '=' xảy ra khi a=b)\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\Leftrightarrow3a^3+3b^3-3a^2b-3ab^2\ge0\Leftrightarrow4a^3+4b^3\ge a^3+3a^2b+3ab^2+b^3\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow8\left(a^3+b^3\right)\ge2\left(a+b\right)^3\Leftrightarrow\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)(đpcm)

31 tháng 12 2016

Ta có 

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bxz+cxy=0\)

Ta có

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)

\(\Rightarrow\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

\(\Rightarrow\frac{2xy.abc^2+2yz.a^2bc+2xz.ab^2c}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

\(\Rightarrow\frac{2abc.\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

 Ta có \(cxy+ayz+bxz=0\)

\(\Rightarrow\frac{2abc.\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

\(\Rightarrow\frac{2abc.0}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

\(\Rightarrow1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)=0\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(đpcm\right)\)

30 tháng 12 2016

bài này bạn bình phương vế thứ 2 lên rồi phân k vế 1 là ra đấy