K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2018

1, \(\left(xy+z\right)^2-x^2y^2=z\left(2xy+z\right)\)

Biến đổi VT :\(\left(xy+z\right)^2-x^2y^2\)

\(=x^2y^2+2xyz+z^2-x^2y^2\)

\(=2xyz+z^2\)

\(=z\left(2xy+z\right)\) = VP

Vậy \(\left(xy+z\right)^2-x^2y^2=z\left(2xy+z\right)\)

2, \(\left(x^2+y^2\right)^2-4x^2y^2=\left(x+y\right)^2\left(x-y\right)^2\)

Biến đổi VT: \(\left(x^2+y^2\right)^2-4x^2y^2\)

\(=x^4+2x^2y^2+y^4-4x^2y^2\)

\(=x^4-2x^2y^2+y^4\)

Biến đổi VP: \(\left(x+y\right)^2\left(x-y\right)^2\)

\(=\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)\)

\(=x^4-2x^3y+x^2y^2+2x^3y-4x^2y^2+2xy^3+x^2y^2-2xy^3+y^4\)\(=x^4-2x^2y^2+y^4\)

Ta có VT = VP

Vậy \(\left(x^2+y^2\right)^2-4x^2y^2=\left(x+y\right)^2\left(x-y\right)^2\)

8 tháng 9 2018

1 ) \(VT=\left(xy+z\right)^2-x^2y^2\)

\(=x^2y^2+2xyz+z^2-x^2y^2\)

\(=2xyz+z^2\)

\(=z\left(2xy+z\right)=VP\left(đpcm\right)\)

2 ) \(VT=\left(x^2+y^2\right)^2-4x^2y^2\)

\(=x^4+2x^2y^2+y^4-4x^2y^2\)

\(=x^4+y^4-2x^2y^2\)

\(=\left(x^2-y^2\right)^2\)

\(=\left[\left(x-y\right)\left(x+y\right)\right]^2\)

\(=\left(x-y\right)^2\left(x+y\right)^2=VP\left(đpcm\right)\)

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

26 tháng 11 2017

bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc

26 tháng 11 2017

1). x2y2(y-x)+y2z2(z-y)-z2x2(z-x)

2)xyz-(xy+yz+xz)+(x+y+z)-1

3)yz(y+z)+xz(z-x)-xy(x+y)

5)y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2

6)8x3(y+z)-y3(z+2x)-z3(2x-y)

7) (x2+y2)3+(z2-x2)3-(y2+z2)3

9 tháng 7 2023

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

9 tháng 7 2023

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

a) Ta có: \(VT=\left(x-y-z\right)^2\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)

\(=x^2+y^2+z^2-2xy+2yz-2xz\)

=VP(đpcm)

b) Ta có: \(VT=\left(x+y-z\right)^2\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

=VP(đpcm)

c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)

Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=VP(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

=VP(đpcm)

20 tháng 7 2020

a, b, nhân vào là ra à

c, nghe cứ là lạ

d, cũng nhân là ra hà

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)

15 tháng 7 2017

a) \(VT=\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3+x^2+x-x^2-x-1\)

\(=x^3-1=VP\)

b) \(VT=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4=VP\)

c) \(VT=\left(x+y+z\right)^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2+2xz+2yz+z^2\)

\(=x^2+y^2+z^2+2xy+2yz+2zx=VP\)

Chúc bạn học tốt.

18 tháng 9 2017

phần e là cả hai dòng nhé các bạn

18 tháng 9 2017

bn viết rõ đề đi bn

Vd:x2 là 2.x hay x\(^2\)

Có nhiều chỗ vậy lắm bn ạ,bn viết lại đề đi rồi tụi mk giúp cho.

28 tháng 6 2017

ko cần khó khăn

\(VT=\left(xy+z\right)^2-x^2y^2=\left(xy+z\right)^2-\left(xy\right)^2\)

\(=\left(xy+z-xy\right)\left(xy+z+xy\right)\)

\(=z\left(2xy+z\right)=VP\)

28 tháng 6 2017

Xin ghi lại đề

\(CM:\left(xy+z\right)^2-x^2y^2=z\left(2xy+z\right)\)

Và mới học lớp 7

:))

Trog những HĐT trên chắc là

bn đánh máy thiếu số mũ nhỉ??

Phải ko

23 tháng 9 2019

1.\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3=2y^3\)

2. \(2\left(2x+1\right)\left(3x-1\right)+\left(2x+1\right)^2+\left(3x-1\right)^2\)

\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)

3. \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z+y-z\right)^2=x^2\)

4. \(\left(x-3\right)\left(x+3\right)-\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3-x+3\right)=6\left(x-3\right)\)

5. \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3+2x^2-x-2-x^3+y^3=2x^2-x-2+y^3\)

6. Áp dụng các hằng đẳng thức đáng nhớ