Chứng tỏ rằng số 11...122...2 ( n số 1; n số 2) là tích của 2 số tự nhiên liên tiếp
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
11...122...2 ( n số 1; n số 2)
=111....1(n chữ số 1) 00...00(n chữ số 0) + 22...2(n chữ số 2)
=111...1(n chữ số 1) . 100...0(n chữ số 0) +111...1(n chữ số 1) . 2
=11....1(n chữ số 1) (1000....0(n chữ số 0) + 2)
=111....1(n chữ số 1) . 100...02(n-1 chữ số 0)
=11...1 . 3 ( n chữ số 1) . 33...34(n-1 chữ số 3)
=333...3( n chữ số 3) . 33...34(n-1 chữ số 3)
Vậy ..........
Ta có: 11…122…2=11…100…0+22…2(n chữ số 1, n chữ số 2, n chữ số 0)
=11…1.10…0+11…1.2
=11…1.10n+11…1.2
=11…1.(10n+2)
=(10…0+1).(10n+2)
=(10n+1).(10n+2)
Vì 10n+1 và 10n+2 là 2 số tự nhiên liên tiếp.
=> 11…12…2 là tích của 2 số tự nhiên liên tiếp