Chứng minh rằng với mọi n thì 19^2n + 5n^n + 2002 không phải là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\(19^{2n}\)\) tận cùng là 1
\(\(5^n\)\) tận cùng là 5
2002 tận cùng là 2
\(\(\Rightarrow19^{2n}+5^n+2002\)\) tận cùng là 8
Vậy nó không thể là số chính phương được.
Ta thấy: \(n^2-n+2=n^2-\frac{1}{2}.2.n+\frac{1}{4}+\frac{7}{4}=\left(n-\frac{1}{2}\right)^2+\frac{7}{4}\)
Vì (n-1/2)^2 là số chính phương mà 7/4 ko là số chính phương nên x^2 - n + 2 không phải là số chính phương với mọi n >= 2
Đặt \(n^3-n+2=a^2\)
<=> \(n\left(n-1\right)\left(n+1\right)+2=a^2\)
Vì \(n\left(n-1\right)\left(n+1\right)\equiv0\left(mod3\right)\)
=> \(n\left(n-1\right)\left(n+1\right)+2\equiv2\left(mod3\right)\)
Mà 1 số chính phương chia 3 dư 0 hoặc 1
=> \(n^3-n+2\) không thể là số chính phương