B=1^2+2^2+3^2+...+n^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: \(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
b: \(B=-1^2+2^2-3^2+4^2-...-99^2+100^2\)
\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)
\(=1+2+3+...+99+100\)
=5050
a) Đặt A = 1.2 + 2.3 + ........ + (n-1)n
3A = 1.2.3 + 2.3.(4-1) + .... + (n-1)n[(n+1)-(n-2)]
3A = 1.2.3 + 2.3.4 - 1.2.3 + .... + (n-1)n(n+1) - (n-2)(n-1)n
3A = (1.2.3 - 1.2..3) + ... + (n-1)n(n+1)
A = \(\frac{\left(n-1\right)n\left(n+1\right)}{3}\)
b) Đặt B = 12 + 22 + ..... + n2
B = 1(2 - 1) + 2(3 - 1) + ..... + n[(n + 1) - 1]
B = 1.2 + 2.3 + .......... + n(n + 1) - (1+2+3+....+n)
B = A - \(\frac{n\left(n+1\right)}{2}\)
a) bằng 9 nha bạn
b) thì mik ko bik làm.
Đúng thì bạn tim giúp mik nha bạn. Thx bạn
Bài 2 :
a) C = ( n + 1 )( n + 2 )( n + 3 )( n + 4 )
<=> C = [( n + 1 ).( n + 4 )].[( n + 2 ).( n + 3 )] + 1
<=> C = ( n2 + 5n + 4 ).( n2 + 5n + 6 ) + 1
Đặt t = n2 + 5n + 5
Suy ra : C = ( t - 1 ).( t + 1 ) + 1
=> C = t2 - 1 + 1
<=> C = t2 hay C = ( n2 + 5n + 5 )2
Vì n thuộc Z => n2 + 5n + 5 thuộc Z => C là số chính phương
( đpcm )
b) E = n2 + ( n + 1 )2 + n2 ( n + 1 )2
<=> E = n2 - 2n( n + 1 ) + ( n + 1 )2 + 2n( n + 1 ) + n2( n +1 )2
<=> E = [ n - ( n + 1 )]2 + 2n( n + 1 ) + [ n( n + 1 )]2
<=> E = ( n - n - 1 )2 + 2n( n + 1 ) + [ n( n + 1 )]2
<=> E = 12 + 2.1.n( n + 1 ) + [ n( n + 1 )]2
<=> E = [ n( n + 1 ) + 1 ]2
<=> E = ( n2 + n + 1 )2
Vì n thuộc Z => n2 + n + 1 thuộc Z => E là số chính phương
( đpcm )
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}\)
b) \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\)
a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] : 3
1)\(n^2\left(n-1\right)\left(n+1\right)-\left(n^2+2\right)\left(n^2-2\right)=n^2\left(n^2-1\right)-\left(n^4-4\right)=n^4-n^2-n^4+4\)
\(=-n^2+4\)
2)\(\left(y+3\right)\left(y-3\right)\left(y^2+9\right)-\left(y^2-4\right)\left(y^2+4\right)=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-16\right)\)
\(=y^4-81-y^4+16=-65\)
3)\(\left(x-2y+3\right)\left(x+2y-3\right)-\left(x-2y\right)\left(x+2y\right)=\left(x+3\right)^2-4y^2-\left(x^2-4y^2\right)\)
\(=x^2+6x+9-4y^2-x^2+4y^2=6x+9\)
4)\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
5)\(\left(a+b-c\right)^2=a^2+b^2+c^2+2ab-2bc-2ac\)
6)\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab+2bc-2ac\)
Học tốt nha bạn !
a/ \(=\lim\limits\dfrac{\sqrt{\dfrac{n}{n}+\dfrac{1}{n}}}{\dfrac{1}{\sqrt{n}}+\sqrt{\dfrac{n}{n}}}=1\)
b/ \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow\lim\limits\dfrac{n\left(n+1\right)}{2n^2+4}=\lim\limits\dfrac{\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}{\dfrac{2n^2}{n^2}+\dfrac{4}{n^2}}=\dfrac{1}{2}\)
c/ \(=\lim\limits\dfrac{n^2+n+1-n^2}{\sqrt{n^2+n+1}+n}=\lim\limits\dfrac{n+1}{\sqrt{n^2+n+1}+n}=\lim\limits\dfrac{\dfrac{n}{n}+\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{n}{n^2}+\dfrac{1}{n^2}}+\dfrac{n}{n}}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
d/ \(=\lim\limits\left[\sqrt{n}\left(\sqrt{3-\dfrac{1}{\sqrt{n}}}-\sqrt{2-\dfrac{1}{\sqrt{n}}}\right)\right]=\lim\limits\left[\sqrt{n}\left(\sqrt{3}-\sqrt{2}\right)\right]=+\infty\)
e/ \(=\lim\limits\dfrac{n^3+2n^2-n-n^3}{\left(\sqrt[3]{n^3+2n^2}\right)^2+n.\sqrt[3]{n^3+2n^2}+n^2}=\lim\limits\dfrac{2n^2-n}{\left(n^3+2n^2\right)^{\dfrac{2}{3}}+n.\left(n^3+2n^2\right)^{\dfrac{1}{3}}+n^2}\)
\(=\dfrac{2}{1+1+1}=\dfrac{2}{3}\)
g/ \(=\lim\limits\dfrac{2^n+9.3^n}{4.3^n+8.2^n}=\lim\limits\dfrac{\left(\dfrac{2}{3}\right)^n+9.\left(\dfrac{3}{3}\right)^n}{4.\left(\dfrac{3}{3}\right)^n+8.\left(\dfrac{2}{3}\right)^n}=\dfrac{9}{4}\)
\(B=1.2-1+2.3-2+......+n.\left(n+1\right)-n\)
\(=\left(1.2+2.3+.......+n\left(n+1\right)\right)-\left(1+2+.....+n\right)\)
Đặt:\(1.2+2.3+.....+n\left(n+1\right)=m\)
\(\Rightarrow3m=1.2.3+2.3.3+.....+n\left(n+1\right).3\)
\(3m=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+......+n\left(n+1\right)\left(n+2-n+1\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+........+n\left(n+1\right)\left(n+2\right)-\left(n-1\right).n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\Rightarrow m=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(\Rightarrow B=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}=n\left(n+1\right)\left(\frac{n+2}{3}-\frac{1}{2}\right)\)
\(=\frac{n\left(n+1\right).\left(2n+1\right)}{6}\)