Tính:
\(\dfrac{27^2.8^5}{6^6.32^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{27^2.8^5}{6^6.32^3}=\frac{\left(3^3\right)^2.\left(2^3\right)^5}{2^6.3^6.\left(2^5\right)^3}\)
\(=\frac{3^6.2^{15}}{2^6.3^6.2^{15}}\)
\(=\frac{1}{2^6}\)
\(\frac{27^2.8^5}{6^6.32^3}=\frac{\left(3^3\right)^2.\left(2^3\right)^5}{\left(2.3\right)^6.\left(2^5\right)^3}=\frac{3^6.2^{15}}{2^6.3^6.2^{15}}=\frac{1}{2^6}=\frac{1}{64}\)
a: \(=\dfrac{-3^4\cdot2^8}{2^2\cdot2^2\cdot3^2}=-3^2\cdot2^2=-6^2=-36\)
b: \(=\dfrac{3^6\cdot2^{15}}{3^6\cdot2^6\cdot2^{15}}=\dfrac{1}{2^6}=\dfrac{1}{64}\)
c: \(=\left(\dfrac{0.8}{0.4}\right)^5\cdot\dfrac{1}{0.4}=2^5\cdot\dfrac{1}{0.4}=\dfrac{32}{0.4}=80\)
1. Tìm n, biết:
a) \(\dfrac{-32}{\left(-2\right)^n}=4\)
\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)
\(\Rightarrow\left(-2\right)^n.\left(-2\right)^2=\left(-2\right)^5\)
(-2)n + 2 = (-2)5
n + 2 = 5
n = 5 - 2
n = 3.
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow\dfrac{2^3}{2^n}=2\)
\(\Rightarrow\) 2n . 2 = 23
n + 1 = 3
n = 3 - 1
n = 2.
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
2n - 1 = 3
2n = 3 + 1
2n = 4
n = 4 : 2
n = 2.
2. Tính:
a) \(\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{4}\right)^2\)
\(=\left(\dfrac{1}{2}\right)^3.\left[\left(\dfrac{1}{2}\right)^2\right]^2\)
\(=\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{2}\right)^4\)
\(=\left(\dfrac{1}{2}\right)^7\)
\(=\dfrac{1}{128}\)
b) 273 : 93
= (33)3 : (32)3
= 39 : 36
= 33
= 27
c) 1252 : 253
= (53)2 : (52)3
= 56 : 56
= 1
d) \(\dfrac{27^2.8^5}{6^6.32^3}\)
\(=\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{6^6.\left(2^5\right)^3}\)
\(=\dfrac{3^6.2^{15}}{6^6.2^{15}}\)
\(=\dfrac{3^6}{6^6}\)
\(=\dfrac{1}{64}.\)
B2 :
b) 27\(^3\): 9\(^3\)= (27:9)\(^3\)= 3\(^3\)
c) 125\(^2\): 25\(^3\)= 15625 : 15625 = 1
a: \(A=\dfrac{3^3\cdot2^3+3^3\cdot2^2+3^3\cdot1}{-13}=\dfrac{27\left(2^3+2^2+1\right)}{-13}=-27\)
b: \(B=\dfrac{2\cdot2^{12}\cdot3^6+2^{11}\cdot3^9}{2^3\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot3^8}\)
\(=\dfrac{2^{13}\cdot3^6+2^{11}\cdot3^9}{2^{10}\cdot3^7+2^{10}\cdot5\cdot3^8}\)
\(=\dfrac{2^{11}\cdot3^6\left(2^2+3^3\right)}{2^{10}\cdot3^7\left(1+5\cdot3\right)}=\dfrac{2}{3}\cdot\dfrac{4+27}{1+15}=\dfrac{2}{3}\cdot\dfrac{31}{16}=\dfrac{31}{24}\)
c: \(C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{35}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot2^6-7\right)}=\dfrac{10-9}{5\cdot64-7}=\dfrac{1}{313}\)
`@` `\text {Ans}`
`\downarrow`
`a,`
`5.125.25 \div 5^6`
`=`\(5\cdot5^3\cdot5^2\div5^6\)
`=`\(5^{1+3+2-6}=5^{6-6}=5^0=1\)
`b,`
\(2^{14}\div\left(2^6\cdot32\right)\)
`=`\(2^{14}\div\left(2^6\cdot2^5\right)\)
`=`\(2^{14}\div2^{11}=2^3\)
`c,`
`3.3^5\div 27`
`=`\(3\cdot3^5\div3^3\)
`=`\(3^{1+5-3}\)
`=`\(3^3\)
`d,`
\(2^{15}\div\left(2^6\cdot32\right)=2^{15}\div\left(2^6\cdot2^5\right)=2^{15}\div2^{11}=2^4\)
`e,`
\(3^2\cdot27\div81=3^2\cdot3^3\div3^4=3\)
`g,`
\(100\cdot1000\cdot10000-10^9=10^2\cdot10^3\cdot10^4-10^9\)
`=`\(10^9-10^9=0\)
`h,`
\(125^4\div5^9=\left(5^3\right)^4\div5^9=5^{12}\div5^9=5^3\)
\(\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{2^6.3^6.\left(2^4\right)^3}=\dfrac{3^6.2^{15}}{2^{18}.3^6}=\dfrac{1}{2^{13}}=2^{-13}\)