K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

31 tháng 10 2021

xét tứ giác ANMP có 

góc NAP = 90 độ ( AB vuông góc AC)

góc MPA = 90 độ (MP vuông góc AC)

Góc ANM = 90 độ (MN vuông góc AB)

=> tứ giác AMNP là hình chữ nhật

 

31 tháng 10 2021

Cảm ơn ạ ^^

 

23 tháng 12 2023

Bài 6:

Xét ΔOAC vuông tại A và ΔOBD vuông tại B có

OA=OB

\(\widehat{AOC}=\widehat{BOD}\)(hai góc đối đỉnh)

Do đó: ΔOAC=ΔOBD

=>OC=OD

Bài 7:

a: Ta có: \(\widehat{DAB}+\widehat{BAC}+\widehat{CAE}=180^0\)

=>\(\widehat{DAB}+\widehat{CAE}+90^0=180^0\)

=>\(\widehat{DAB}+\widehat{CAE}=90^0\)

mà \(\widehat{DAB}+\widehat{DBA}=90^0\)

nên \(\widehat{DBA}=\widehat{CAE}\)

Xét ΔABD vuông tại A và D và ΔCAE vuông tại E có

AB=AC

\(\widehat{DBA}=\widehat{EAC}\)

Do đó: ΔABD=ΔCAE

b: ta có: ΔABD=ΔCAE

=>DB=AE và AD=CE

DB+CE=DA+AE=DE

Gọi tia đối của tia AB là AE

=>AD là phân giác của \(\widehat{EAC}\)

Xét ΔABC có \(\widehat{EAC}\) là góc ngoài tại đỉnh A

nên \(\widehat{EAC}=\widehat{ABC}+\widehat{ACB}=80^0\)

AD là phân giác của góc EAC

=>\(\widehat{EAD}=\widehat{CAD}=\dfrac{\widehat{EAC}}{2}=\dfrac{80^0}{2}=40^0\)

\(\widehat{DAC}=\widehat{ACB}\left(=40^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

a: góc OBA+góc OCA=90+90=180 độ

=>ABOC nội tiếp

b: góc OIE=góc OCE=90 độ

=>OICE là tứ giác nội tiếp

=>góc OEI=góc OCI

=>góc OEI=góc OCB

OBAC nội tiếp

=>góc OCB=góc OAB

=>góc OEI=góc OAB

=>góc OEI=góc OAI

=>OIAE nội tiếp

17 tháng 4 2023

Lồng ghép?
https://download.vn/ta-con-mua-mua-xuan-43492

17 tháng 4 2023

4p viết được từng này cũng hơi lạ