K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 9 2018

Lời giải:

Ta có:

\(A=\tan ^3a+\cot ^3a=\frac{\sin ^3a}{\cos ^3a}+\frac{\cos ^3a}{\sin ^3a}\)

\(=\frac{(\sin a)^6+(\cos a)^6}{(\sin a\cos a)^3}\)

\(=\frac{(\sin ^2a+\cos ^2a)(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)}{(\sin a\cos a)^3}\)

\(=\frac{\sin^4 a-\sin ^2a\cos ^2a+\cos ^4a}{(\sin a\cos a)^3}\)

\(=\frac{(\sin ^2a+\cos ^2a)^2-3\sin ^2a\cos ^2a}{(\sin a\cos a)^3}=\frac{1-3(\sin a\cos a)^2}{(\sin a\cos a)^3}(*)\)

Mặt khác: \(\sin a+\cos a=1,366\)

\(\Rightarrow \sin ^2a+2\sin a\cos a+\cos ^2a=1,366^2\)

\(\Rightarrow 2\sin a\cos a=1,366^2-1\Rightarrow \sin a\cos a=\frac{1,366^2-1}{2}\)

Thay vào A ở $(*)$ suy ra:

\(A\approx 5,391\)

19 tháng 2 2017

Chọn B.

Ta có cot3a + tan3a = ( tan a + cota) 3- 3tan a.cot a ( cot a + tan a)

= m3 - 3.1.m = m3 - 3m

NV
23 tháng 11 2019

Giả sử các biểu thức đều xác định

a/ \(\frac{1-sina}{cosa}=\frac{cosa\left(1-sina\right)}{cos^2a}=\frac{cosa\left(1-sina\right)}{1-sin^2a}=\frac{cosa\left(1-sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{cosa}{1+sina}\)

b/ \(=\frac{sin^2a+\left(1+cosa\right)^2}{sina\left(1+cosa\right)}=\frac{sin^2a+cos^2a+2cosa+1}{sina\left(1+cosa\right)}=\frac{2\left(cosa+1\right)}{sina\left(1+cosa\right)}=\frac{2}{sina}\)

c/ \(=\frac{cosa\left(1-sina\right)+cosa\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{2cosa}{1-sin^2a}=\frac{2cosa}{cos^2a}=\frac{2}{cosa}\)

23 tháng 11 2019

Chứng minh các hằng đẳng thức trên

24 tháng 8 2021

tana = 3/4.
=>cota=1/ tana =1:3/4=4/3
sina /cosa =tana
=> sina =tana .cosa =3/4. cosa
lại có sin^2(a)+cos^2(a)=1
<=>9/16cos^2(a)+cos^2=1
<=>25/16cos^2(a)=1
<=>cos^2(a)=16/25
=>[cosa =4/5=>sina =3/5
    [cosa =-4/5=> sina =-2/5

\(\dfrac{\left(cosa-sina\right)^2-\left(cosa+sina\right)^2}{cosa\cdot sina}\)

\(=\dfrac{\left(cosa-sina-cosa-sina\right)\left(cosa-sina+cosa+sina\right)}{cosa\cdot sina}\)

\(=\dfrac{-2\cdot sina\cdot2\cdot cosa}{cosa\cdot sina}=-4\)

11 tháng 6 2021

a) Có: `1+tan^2a=1/(cos^2a)`

`<=> 1+(3/5)^2=1/(cos^2a)`

`=> cosa=\sqrt10/4`

`=> sina = \sqrt(1-cos^2a) = \sqrt6/4`

b) Có: `sin^2a + cos^2a=1`

`<=> sin^2a + (1/4)^2=1`

`=> sina=\sqrt15/4`

`=> tana = (sina)/(cosa) = \sqrt15`

 

11 tháng 6 2021

Má ơi,tính sai:

a)\(\left[{}\begin{matrix}cos\alpha=\dfrac{5\sqrt{34}}{34}\\cos\alpha=\dfrac{-5\sqrt{34}}{34}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}sin\alpha=cos\alpha.tan\alpha=\dfrac{3\sqrt{34}}{34}\\sin\alpha=cos\alpha.tan\alpha=\dfrac{-3\sqrt{34}}{34}\end{matrix}\right.\)

b)\(\left[{}\begin{matrix}sin\alpha=\dfrac{\sqrt{15}}{4}\\sin\alpha=\dfrac{-\sqrt{15}}{4}\end{matrix}\right.\)\(\left[{}\begin{matrix}tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\sqrt{15}\\tatn\alpha=-\sqrt{15}\end{matrix}\right.\)

NV
16 tháng 11 2018

\(A=\dfrac{cosa+sina}{cosa-sina}=\dfrac{\dfrac{cosa}{cosa}+\dfrac{sina}{cosa}}{\dfrac{cosa}{cosa}-\dfrac{sina}{cosa}}=\dfrac{1+tana}{1-tana}=\dfrac{1+\left(-2\right)}{1-\left(-2\right)}=\dfrac{-1}{3}\)