Cho hình bình hành ABCD. Gọi M,N lần lượt là trung điểm của AB, CD . AN và CM lần lượt là cắt BD tại E và F.
a) Chỉ ra vecto ngược hướng với \(\overrightarrow{EF}\)
b) Cm \(\overrightarrow{DE}=\overrightarrow{EF}=\overrightarrow{FB}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCn có
AM//Cn
AM=CN
=>AMCN là hình bình hành
b; Xét ΔBAE có
M là trung điểm của BA
MF//AE
=>F là trung điểm của BE
=>BF=FE
Xét ΔDFC có
N là trung điểm của DC
NE//FC
=>E là trung điểm của DF
=>DE=EF=FB
a) Vì ABCD là hình bình hành (gt)
=> AB // CD (ĐN hình bình hành)
AB = CD (TC hình bình hành)
Vì M = AB/2 (M là trung điểm của AB)
N = CD/2 (N là trung điểm của CD)
mà AB = CD (CMT)
=> M = N
=> AM // CN
=> Tứ giác AMCN là hình bình hành (DHNB hình bình hành)
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Xét ΔANB có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
=>AM=MN(1)
Xét ΔMCD có
F là trung điểm của CD
FN//DM
Do đó: N là trung điểm của CM
Suy ra: NC=NM(2)
Từ (1) và (2) suy ra AM=MN=NC
Bài 3:
a: Ta có: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
b: Để BD=DE=EC thì BD=DE và DE=EC
BD=DE thì ΔDBE cân tại D
=>\(\widehat{DBE}=\widehat{DEB}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)
nên \(\widehat{DBE}=\widehat{EBC}\)
=>\(\widehat{ABE}=\widehat{EBC}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giác kẻ từ B xuống AC
Xét ΔEDC có ED=EC
nên ΔEDC cân tại E
=>\(\widehat{EDC}=\widehat{ECD}\)
mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)
nên \(\widehat{ECD}=\widehat{DCB}\)
=>\(\widehat{ACD}=\widehat{BCD}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác từ C kẻ xuống AB
Bài 2:
a: Ta có: ABCD là hình bình hành
=>AB//CD và AB=CD(1)
Ta có: M là trung điểm của AB
=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)
Ta có: N là trung điểm của CD
=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=MB=NC=ND
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: Ta có AMCN là hình bình hành
=>AN//CM
Xét ΔDFC có
N là trung điểm của DC
NE//FC
Do đó: E là trung điểm của DF
=>DE=EF(4)
Xét ΔABE có
M là trung điểm của BA
MF//AE
Do đó: F là trung điểm của BE
=>BF=FE(5)
Từ (4) và (5) suy ra BF=FE=ED
a: Xét tứ giác AMCN có
AM//CN
AM=CN
=>AMCN là hình bình hành
b: Xét ΔDFC có
N là trung điểm của DC
NE//FC
=>E là trung điểm của DF
=>DE=EF
Xét ΔBAE có
M là trung điểm của BA
MF//AE
=>F là trung điểm của BE
=>BF=FE
=>BF=FE=ED
Lời giải:
a) Vecto ngược hướng với một vecto là vecto song song nhưng không cùng hướng.
Từ đó dễ thấy \(\overrightarrow{ED}; \overrightarrow{BF}\) là hai vecto ngược hướng với \(\overrightarrow{EF}\)
b) Hai vecto bằng nhau nếu chúng cùng hướng và cùng độ dài.
Vì \(AB=DC\Rightarrow \frac{AB}{2}=\frac{DC}{2}\Rightarrow AM=CN\)
Mà $AM\parallel CN$ nên $AMCN$ là hình bình hành
Do đó: \(AN\parallel CM\) hay \(MF\parallel AE; EN\parallel FC\)
Khi đó: Áp dụng định lý Ta-let:
\(\frac{BF}{EF}=\frac{BM}{MA}=1\Rightarrow BF=EF\)
\(\frac{DE}{EF}=\frac{DN}{NC}=1\Rightarrow DE=EF\)
Vậy \(FB=EF=DE\Leftrightarrow |\overrightarrow{FB}|=|\overrightarrow{EF}|=|\overrightarrow{DE}|\)
Mà 3 vecto trên lại song song và cùng hướng nên \(\overrightarrow{DE}=\overrightarrow{EF}=\overrightarrow{FB}\)