Tìm giá trị nhỏ nhất
B= \(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)
\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(A=\left|1-3x\right|+\left|3x-2\right|\)
\(A=\left|1-3x+3x-2\right|\)
\(A=\left|-1\right|=1\)
Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)
\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
Ta có \(9x^2-6x+1=\left(3x-1\right)^2,25-30x+9x^2=\left(5-3x\right)^2.\)
Suy ra \(B=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4.\) (Ở đây ta sử dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|,\) với dấu bằng xảy ra khi và chỉ khi \(ab\ge0\)).
Mà khi \(x=\frac{1}{3}\) thì \(B=4.\) Vậy giá trị nhỏ nhất của B là 4.
\(P=\sqrt[]{9x^2-6x+1}+\sqrt[]{25-30x+9x^2}\)
\(\Leftrightarrow P=\sqrt[]{\left(3x-1\right)^2}+\sqrt[]{\left(5-3x\right)^2}\)
\(\Leftrightarrow P=\left|3x-1\right|+\left|5-3x\right|\)
\(\Leftrightarrow P=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4\)
Vậy \(GTNN\left(P\right)=4\)
\(Q=\sqrt{9x^2-6x+1}+\sqrt{25-30+9x^2}+2011\)
\(Q=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}+2011\)
\(Q=\left|3x-1\right|+\left|5-3x\right|+2011\)
Đặt \(Q'=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4\)
Đẳng thức xảy ra \(\Leftrightarrow\left(3x-1\right)\left(5-3x\right)\ge0\)
\(\Leftrightarrow\frac{1}{3}\le x\le\frac{5}{3}\)
\(\Rightarrow Min_Q=Min_{Q'}+2011=4+2011=2015\)
Q = \(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}+2011\)
Q = \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-5\right)^2}+2011\)
Q = \(3x-1+3x-5+2011\)
Q = \(6x+2005\)
Ta có :
\(\sqrt{9x^2-6x+2}=\sqrt{\left(9x^2-6x+1\right)+1}=\sqrt{\left(3x-1\right)^2+1}\ge\sqrt{1}=1\)
\(\sqrt{45x^2-30x+9}=\sqrt{5\left(9x^2-6x+1\right)+4}=\sqrt{5\left(3x-1\right)^2+4}\ge\sqrt{4}=2\)
\(\sqrt{6x-9x^2+8}=\sqrt{-\left(9x^2-6x+1\right)+9}=\sqrt{-\left(3x-1\right)^2+9}\le3\)
\(\Rightarrow VT\ge3\ge VP\)
mÀ đề lại cho \(VT=VP\) \(\Rightarrow\hept{\begin{cases}\sqrt{\left(3x-1\right)^2+1}=1\\\sqrt{\left(3x-1\right)^2+4}=2\\\sqrt{-\left(3x-1\right)^2+9}=3\end{cases}\Rightarrow x=\frac{1}{3}}\)
Vậy \(x=\frac{1}{3}\)
\(\sqrt{9x^2-6x+1}+\sqrt{25-30+9x^2}\)
=\(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}\)
=|3x-1|+|5-3x| ≥ |3x-1+5-3x|
<=> |3x-1|+|5-3x| ≥ |4|
=> Min A =4 khi (3x-1)(5-3x) ≥ 0
ta có bảng
=> x ≤ 1/3 hoặc x ≥ 5/3
vậy .....
\(B=\left|3x-1\right|+\left|5-3x\right|>=\left|3x-1+5-3x\right|=4\)
Dấu '=' xảy ra khi (3x-1)(3x-5)<=0
=>1/3<=x<=5/3