K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

\(\Rightarrow\left(x\sqrt{yz}\right)^2=\left(8y\sqrt{xz}\right)^2=\left(2z\sqrt{xy}\right)^2=1^2\Rightarrow x^2yz=64xy^2z=4xyz^2=1\)

\(x^2yz=1\Rightarrow xyz=\frac{1}{x};64xy^2z=1\Rightarrow xyz=\frac{1}{64y};4xyz^2=1\Rightarrow xyz=\frac{1}{4z}\)

\(\Rightarrow\frac{1}{x}=\frac{1}{64y}=\frac{1}{4z}\left(=xyz\right)\Rightarrow x=64y=4z\)

\(x=64y\Rightarrow\frac{x}{64}=y;x=4z\Rightarrow\frac{x}{4}=z\)

\(x^2yz=1\Rightarrow x^2\cdot\frac{x}{64}\cdot\frac{x}{4}=\frac{x^4}{256}=1\Rightarrow x^4=256\Rightarrow x=4\)

\(x=64y\Rightarrow4=64y\Rightarrow y=\frac{1}{16}\)

\(x=4z\Rightarrow4=4z\Rightarrow z=1\)

vậy \(x=4;y=\frac{1}{16};z=1\)

NV
16 tháng 10 2019

\(3-2P=\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{xz}}+\frac{z}{z+2\sqrt{xy}}\)

\(3-2P\ge\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

\(\Rightarrow2P\le2\Rightarrow P\le1\)

Dấu "=" xảy ra khi \(x=y=z\)

\(M\le\sqrt{\left(1+1\right)\left(x+y+2\right)}=\sqrt{20}=4\sqrt{5}\)

\(M_{max}=4\sqrt{5}\) khi \(\left\{{}\begin{matrix}x-2=y+4\\x+y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

11 tháng 7 2021

Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\Rightarrow a^3b^3+b^3c^3+c^3a^3=1\)

\(=\sum\dfrac{a^{12}}{a^6+b^6}=\sum\dfrac{a^6\left(a^6+b^6\right)}{a^6+b^6}-\sum\dfrac{a^6b^6}{a^6+b^6}\\ =\sum a^6-\sum\dfrac{a^6b^6}{a^6+b^6}\\ \overset{Cosi}{\ge}a^3b^3+b^3c^3+c^3a^2-\sum\dfrac{a^6b^6}{2a^3b^3}\\ =1-\dfrac{1}{2}\sum a^3b^3=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Dấu = xảy ra khi \(x=y=z=\dfrac{1}{\sqrt[3]{3}}\)

11 tháng 7 2021

dòng 3 từ dưới lên là c^3a^3 nhé, mình gõ lỗi xíu

 

NV
29 tháng 1 2024

\(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow2x+2y+2z=2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\)

\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=\sqrt{y}\\\sqrt{y}=\sqrt{z}\\\sqrt{z}=\sqrt{x}\end{matrix}\right.\)

\(\Rightarrow x=y=z\)

19 tháng 5 2021

\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)

\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)

\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)

\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)

\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)

\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)

Dấu = xảy ra khi \(x=y=z=9\)

19 tháng 5 2021

 Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\) 

CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)  ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\) 

Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)

\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) 

Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\) 

Mặt khác :   \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)

Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)

" = " \(\Leftrightarrow x=y=z=9\)

17 tháng 7 2018

thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!

17 tháng 1 2021

thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!