Tính xOy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Giải. Ta có: góc xOy + góc yOx' = 1800 (kề bù)
=> góc yOx' = góc 1800 - góc xOy = 1800 - 650 = 1150
Ta lại có:
+) góc xOy = góc x'Oy' (đối đỉnh)
Mà góc xOy = 650 => góc x'Oy' = 650
+) góc yOx' = góc xOy' (đối đỉnh)
Mà góc yOx' = 1150 => góc xOy' = 1150
2. Sai đề
câu 1/ 5x(\(4x^2\)-2x+1) - 2x(\(10x^2\)-5x-2)
= 5x.\(4x^2\)-5x.2x+ 5x.1 - ( 2x.\(10x^2\)-2x.5x-2x.2)
= 9\(x^3\)-10\(x^2\)+5x - 20\(x^3\)+10\(x^2\)+4x
= (9\(x^3\)-\(20x^3\)) + (-10\(x^2\)+10\(x^2\)) + (5x+4x)
= \(-11x^3\) + 9x
à cj ơi, e 2k6, đọc phần lí thuyết r lm, nên có lỗi sai j mong cj thông cảm
a)-(x-y)(x2+xy-1)=-(x3+x2y-x-x2y-xy2+y)
=-(x3-xy2-x+y)
=-x3+xy2+x-y
b)x2(x-1)-(x3+1)(x-y)=x3-x2-x3+x2y-x+y
=-x2+x2y-x+y
c)(3x-2)(2x-1)+(-5x-1)(3x+2)=6x2-3x-4x+2-15x2-10x-3x-2
=-9x2-20x
d) hình như bạn ghi lỗi
Bài 2: C=x(x2-y)-x2(x+y)+y(x2-x)
=x3-xy-x3-x2y+x2y-xy
=-2xy
Thay x=1/2,y=-1 vào C, ta có:
C=-2.1/2.(-1)=1
Vậy C=1 khi x=1/2 và y=-1.
a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)
\(=\left(3x-2+3x+2\right)^2\)
\(=36x^2\)(1)
Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:
\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)
b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
\(=\left(x+y-7-y+6\right)^2\)
\(=\left(x-1\right)^2=100^2=10000\)
Lời giải:
$x+y-2=0\Rightarrow x+y=2$
a)
$B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x(x+y)+2x+3$
$=x^3(x+y)+x^3y-2x^3+x^2y^2-2x^2y-2x+2x+3$
$=2x^3+x^3y-2x^3+x^2y^2-2x^2y+3$
$=x^3y+x^2y^2-2x^2y+3$
$=xy(x^2+xy-2x)+3=xy[x(x+y)-2x]+3=xy(2x-2x)+3=3$
b)
$C=x^3+x^2y-2x^2-xy+y^2-3y-x+5$
$=x^2(x+y)-2x^2-xy+y^2-3(y+x)+2x+5$
$=2x^2-2x^2-xy+y^2-6+2x+5$
$=-xy+y^2+2x-1$
$=y(x+y)+2x-1-2xy=2y+2x-1-2x=2(x+y)-1-2x=3-2x$ (không tính cụ thể được giá trị- bạn xem lại đề)
c)
$D=2x^4+3x^2y^2+y^4+y^2$
$=(x^4+2x^2y^2+y^4)+x^4+x^2y^2+y^2
$=(x^2+y^2)^2+x^4+x^2y^2+y^2$
$=1+x^2(x^2+y^2)+y^2=1+x^2+y^2=1+1=2$
Chứng tỏ rằng các đa thức sau ko phụ thuộc vào biến
a) Ta có: \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-\left(6x^2+14x+9x+21\right)\)
\(=6x^2+23x-55-6x^2-23x-21\)
=-74
Vậy: Đa thức A không phụ thuộc vào biến(đpcm)
b) Ta có: \(B=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=-8\)
Vậy: Đa thức B không phụ thuộc vào biến(đpcm)
c) Ta có: \(C=4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
\(=-24\)
Vậy: Đa thức C không phụ thuộc vào biến(đpcm)
d) Ta có: \(D=x\left(y+z-yz\right)-y\left(z+x-zx\right)+z\left(y-x\right)\)
\(=xy+xz-xyz-yz-xy+xyz+zy-zx\)
=0
Vậy: Đa thức D không phụ thuộc vào biến(đpcm)
Có : ^ x'Oy' = ^ xOy = 2x ( đối đỉnh )
Mà ^ xOy + ^ x'Oy = 2x + 3x = 5x = 180o ( kề bù )
=> 5x = 180o
=> x = 36o
=> ^ xOy = 2x = 2. 36o = 72o
Vậy góc xOy = 72o
Mà ^ xOy + ^ x'Oy = 2x + 3x = 5x = 180o ( kề bù )
=> 5x = 180o
=> x = 36o
=> ^ xOy = 2x = 2. 36o = 72o
Vậy góc xOy = 72o