cm: \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{\left(n-1\right)\sqrt{n}}}}}< 3\) (n>1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)
a, Ta có
\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)
mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, áp dụng bđt ta có
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)
\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)
\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..
\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)
\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mấy bài này đã có người làm rồi nhé bạn vào câu hỏi tương tự mà xem.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
+) Ta có: \(\dfrac{1}{\sqrt{n}}=\dfrac{2}{2\sqrt{n}}>\dfrac{2}{\sqrt{n}+\sqrt{n+1}}=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\) \(=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}\)
\(=2\left(\sqrt{n+1}-\sqrt{n}\right)\) (1)
+) Ta có:
\(\dfrac{1}{\sqrt{n}}=\dfrac{2}{2\sqrt{n}}< \dfrac{2}{\sqrt{n}+\sqrt{n-1}}=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\) \(=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-\left(n-1\right)}\)
\(=2\left(\sqrt{n}-\sqrt{n-1}\right)\) (2)
Từ (1) và (2) ⇒ đpcm
Học toán vui vẻ!
![](https://rs.olm.vn/images/avt/0.png?1311)
bai 1
(n+1)√n=√n^3+√n>2√(n^3.n)=2n^2>2(n^2-1)=2(n-1)(n+1)
1/[(n+1)√n]<1/[2(n-1)(n+1)]=1/4.[2/(n-1)(n+1)]
A=..
n =1 yes
n>1
A<1+1/4[2/1.3+2/3.5+..+2/(n-1)(n+1)
A<1+1/4[ 2-1/(n+1)]<1+1/2<2=>dpcm