Giải phương trình: 5(x+y)=3xy-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x2 + y2 = 6 (1) và x + y - 3xy = 5 (2). Từ (1) => (x + y)2 = 2xy + 6. Từ (2) => (x + y)2 = (3xy + 5)2. Do đó ta có (3xy + 5)2 = 2xy + 6
<=> 9x2y2 + 30xy + 25 = 2xy + 6 <=> 9x2y2 + 28xy + 19 = 0 <=> (xy + 1)(9xy + 19) = 0 <=> xy = - 1 hoặc \(xy=-\frac{19}{9}\).
- Nếu xy = - 1 => \(y=\frac{-1}{x}\). Thay vào (2) ta có: \(x-\frac{1}{x}=5-3=2\Leftrightarrow x^2-2x-1=0\)
Suy ra \(x=1+\sqrt{2}\) hoặc \(x=1-\sqrt{2}\). Nếu \(x=1+\sqrt{2}\Rightarrow y=1-\sqrt{2}\);Nếu \(x=1-\sqrt{2}\Rightarrow y=1+\sqrt{2}\).
- Nếu \(xy=\frac{-19}{9}\Rightarrow y=\frac{-19}{9x}\). Thay vào (2) ta có: \(x-\frac{19}{9x}=5-3.\frac{19}{9}=\frac{-4}{3}\Leftrightarrow9x^2+12x-19=0\).
Suy ra \(x=\frac{-2+\sqrt{23}}{3}\) hoặc \(x=\frac{-2-\sqrt{23}}{3}\). Nếu \(x=\frac{-2+\sqrt{23}}{3}\Rightarrow y=\frac{-2-\sqrt{23}}{3}\);Nếu \(x=\frac{-2-\sqrt{23}}{3}\Rightarrow y=\frac{-2+\sqrt{23}}{3}\).
Vậy hệ phương trình có 4 nghiệm (x;y) là: \(\left(1+\sqrt{2};1-\sqrt{2}\right),\left(1-\sqrt{2};1+\sqrt{2}\right),\left(\frac{-2+\sqrt{23}}{3};\frac{-2-\sqrt{23}}{3}\right),\left(\frac{-2-\sqrt{23}}{3};\frac{-2+\sqrt{23}}{3}\right)\)
\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)
\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)
a) \(x^2-3xy+3y^2=3y\)
Rõ ràng \(x⋮y\) nên đặt \(x=ky\left(k\inℤ\right)\). Pt trở thành:
\(k^2y^2-3ky^2+3y^2=3y\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\k^2y-3ky+3y=3\end{matrix}\right.\).
Khi \(y=0\) \(\Rightarrow x=0\).
Khi \(k^2y-3ky+3y=3\)
\(\Leftrightarrow y\left(k^2-3k+3\right)=3\)
Ta lập bảng giá trị:
\(y\) | 1 | 3 | -1 | -3 |
\(k^2-3k+3\) | 3 | 1 | -3 | -1 |
\(k\) | 0 hoặc 3 | 1 hoặc 2 | vô nghiệm | vô nghiệm |
\(x\) | 0 (loại) hoặc 3 (nhận) | 3 (nhận) hoặc 6 (nhận) |
Vậy pt đã cho có các nghiệm \(\left(0;0\right);\left(3;1\right);\left(3;3\right);\left(6;3\right)\)
b) \(x^2-2xy+5y^2=y+1\)
\(\Leftrightarrow x^2-2yx+5y^2-y-1=0\)
\(\Delta'=\left(-y\right)^2-\left(5y^2-y-1\right)\) \(=-4y^2+y+1\)
Để pt đã cho có nghiệm thì \(-4y^2+y+1\ge0\), giải bpt thu được \(\dfrac{1-\sqrt{17}}{8}\le y\le\dfrac{1+\sqrt{17}}{8}\). Mà lại có \(-1< \dfrac{1-\sqrt{17}}{8}< 0< \dfrac{1+\sqrt{17}}{8}< 1\) nên suy ra \(y=0\). Từ đó tìm được \(x=\pm1\). Vậy pt đã cho có các nghiệm \(\left(1;0\right);\left(-1;0\right)\)
\(2x^2-\left(3y-3\right)x+y^2-2y+1=0\)
\(\Delta=\left(3y-3\right)^2-8\left(y^2-1y+1\right)=\left(y-1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3y-3+y-1}{4}\\x=\dfrac{3y-3-y+1}{4}\end{matrix}\right.\)
\(\Rightarrow...\)
từ phương trình số 2 ta có
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)
lần lượt thay vào 1 ta có
\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)
vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)