Rút gọn đa thức sau: (làm chi tiết hộ mình nhé)
\(\left(A-B\right)\left(A^{2k-1}+A^{2k-2}B+...+AB^{2k-2}+B^{2k-1}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu này là hằng đẳng thức thôi . nhưng nếu muốn làm chi tiết thì đây nha :))
ta có : \(\left(A+B\right)\left(A^{2K}-A^{2k-1}B+...+A^2.B^{2k-2}-AB^{2k-1}+B^{2k}\right)\)
\(=\left(A+B\right)\left(A^{2K}+B^{2k}-A^{2k-1}B+...+A^2.B^{2k-2}-AB^{2k-1}\right)\)
\(=A\left(A^{2k}+B^{2k}\right)+B\left(A^{2k}+B^{2k}\right)+A\left(-A^{2k-1}B+...+A^2B^{2k-2}-AB^{2k-1}\right)+B\left(A^{2k-1}B+...+A^2B^{2k-2}-AB^{2k-1}\right)\)
\(=A\left(A^{2k}+B^{2k}\right)+B\left(A^{2k}+B^{2k}\right)-A^{2k}B-B^{2k}A\)
\(=A^{2k+1}+AB^{2K}+BA^{2k}+B^{2k+1}-A^{2k}B-B^{2k}A\)
\(=A^{2k+1}+B^{2k+1}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta có \(\frac{\left(a^{2k}+b^{2k}\right)}{c^{2k}+d^{2k}}=\frac{a^{2k}-b^{2k}}{c^{2k}-d^{2k}}=\frac{\left(a^{2k}+b^{2k}\right)+\left(a^{2k}-b^{2k}\right)}{\left(c^{2k}+d^{2k}\right)+\left(c^{2k}-d^{2k}\right)}=\frac{\left(a^{2k}+b^{2k}\right)-\left(a^{2k}-b^{2k}\right)}{\left(c^{2k}+d^{2k}\right)-\left(c^{2k}-d^{2k}\right)}\)
=> \(\frac{a^{2k}}{c^{2k}}=\frac{b^{2k}}{d^{2k}}\) => \(\left(\frac{a}{c}\right)^{2k}=\left(\frac{b}{d}\right)^{2k}\) => \(\frac{a}{c}=\frac{b}{d}\) hoặc \(\frac{a}{c}=-\frac{b}{d}\) ( do số mũ 2k chẵn)
=> \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{b}=-\frac{c}{d}\)
a2k+1+b2k+1=(a+b)(a2k-a2k-1b+22k-2.b2-...+a2b2k-2-ab2k-1+b2k) chia hết cho a+b
=>đpcm
Vì \(\left(2x-1\right)^{2k}\ge0;\left(y-\frac{1}{2}\right)^{2k}\ge0\forall x;y\)
Mà theo đề bài: \(\left(2x-1\right)^{2k}+\left(y-\frac{1}{2}\right)^{2k}=0\)
\(\Rightarrow\begin{cases}\left(2x-1\right)^{2k}=0\\\left(y-\frac{1}{2}\right)^{2k}=0\end{cases}\)\(\Rightarrow\begin{cases}2x-1=0\\y-\frac{1}{2}=0\end{cases}\)\(\Rightarrow\begin{cases}2x=1\\y=\frac{1}{2}\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}\)
Vậy \(x=y=\frac{1}{2}\)
Những số có chữ số tận cùng là 2,4,8 khi nâng lên mũ 4 có tận cùng là 6
Thật vậy
\(4^{2k}=2^{4k}=...6\)
\(4^{2k+1}=2^{4k+2}=2^{4k}.4=\left(...6\right).4=...4\)
\(=A^{2k}+A^{2k-1}B+...+A^2B^{2k-1}+AB^{2k-1}-A^{2k-1}\cdot B-A^{2k-2}\cdot B^2-...-B^{2k}\)
\(=A^{2k}-B^{2k}\)