P = \(2\times3+3\times4+4\times5+5\times6+...+99\times100\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = \(\frac{3}{2.3.4}+\frac{3}{3.4.5}+.....+\frac{3}{98.99.100}\)
C = \(3.\left(\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)
C = \(3.\frac{1}{2}.\left(\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
C = \(\frac{3}{2}.\left(\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right)\)
C = \(\frac{3}{2}.\left(\frac{4}{2.3.4}-\frac{2}{2.3.4}+\frac{5}{3.4.5}-\frac{3}{3.4.5}+...+\frac{100}{98.99.100}-\frac{99}{98.99.100}\right)\)
C = \(\frac{3}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
C = \(\frac{3}{2}.\left(\frac{1}{2.3}-\frac{1}{99.100}\right)\)
C = \(\frac{3}{2}.\frac{1649}{9900}\)
C = \(\frac{1649}{6600}\)
\(A=\frac{2\cdot9\cdot8+3\cdot12\cdot10+4\cdot15\cdot12+...+98\cdot297\cdot200}{2\cdot3\cdot4+3\cdot4\cdot5+4\cdot5\cdot6+...+98\cdot99\cdot100}\)
\(=\frac{2\cdot1\cdot3\cdot3\cdot4\cdot2+3\cdot1\cdot4\cdot3\cdot5\cdot2+...+98\cdot1+99\cdot3+100\cdot2}{2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100}\)
\(=\frac{1\cdot3\cdot2\cdot\left(2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100\right)}{2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100}\)
\(=1\cdot3\cdot2\)
\(=6\)
\(A^2=6^2=36\)
dau . la dau x
a/ 1.3.2.4.3.5.4.6.5.7/2.2.3.3.4.4.5.5.6.6=1.7/2.6=7/12
b/ ab.aba=abab
aba=abab:ab
aba=101
=>a=1 b=0
aabb : ab = 99 hay ab x 99 = aabb hay ab x100 – ab = aabb
Ta có phép tính
__ ab00
___ab___
aabb
b=0 hoặc b=5
Nếu b=0 thì a000 – a0 = aa00 (sai)
Nếu b=5 thì
__ a500
__a5___
aa55
a=4
c) thay a=7/6 b=6/5 thi 3 x a + 4 : b - 5/12=3.7/6+4.6/5-5/12=7/2+24/5-5/12=210/60+288/60-25/60=473/60
**** nha
\(\frac{1.3.2.4.3.5.4.6.5.7}{2.2.3.3.4.4.5.5.6.6}=\frac{\left(2.3.4.5.6\right).\left(3.4.5.7\right)}{\left(2.3.4.5.6\right).\left(2.3.4.5.6\right)}=\frac{7}{12}\)
\(=\frac{1.2}{99.100}\)
\(=\frac{2}{9900}=\frac{1}{4950}\)
ta có :
S = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
S x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
S x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
S x 3 = 99x100x101
S = 99x100x101 : 3
S = 333300
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
P = 2 x 3 + 3 x 4 + ...+ 99 x 100
=> 3 x P = 2 x 3 x 3 + 3 x 4 x 3 + ....+ 99 x 100 x 3
3 x P = 2 x 3 x ( 4-1) + 3 x 4 x (5-2) + ...+ 99 x 100 x ( 101 -98)
3 x P = 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5- 2 x 3 x 4 + ...+ 99 x 100 x 101 - 98 x 99 x 101
3 x P = ( 2 x 3 x 4 + 3 x 4 x 5 + ...+ 99 x 100 x 101) - ( 1 x 2 x 3 + 2 x 3 x 4 + ...+ 98 x 99 x 101)
3 x P = 99 x 100 x 101 - 1 x 2 x 3
\(P=\frac{99x100x101-1x2x3}{3}=333298\)
p=2.3+3.4+4.5+5.6+...+99.100
3p=2.3.3+3.4.3+4.5.3+5.6.3+...+99.100.3
3p=2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+5.6.(7-4)+...+99.100.(101-98)
3p=2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+5.6.7-4.5.6+99.100.101-98.99.100
3p=98.99.100-1.2.3
p=\(\frac{98.99.100-1.2.3}{3}=323398\)