K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

\(a,x^2-6x+9>0\)

\(\Leftrightarrow\left(x-3\right)^2>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

Vậy: \(S=\left\{x|x>3\right\}\)

\(b,x^2-8x+16< 0\)

\(\Leftrightarrow\left(x-4\right)^2< 0\)

Vì: \(\left(x-4\right)^2\ge0\)

=> vô lí=> ko có giá trị của x thỏa mãn

Vậy : \(S=\varnothing\)

=.= hok tốt!!

20 tháng 4 2019

1a

x^2-8x<0

<=> x(x-8)<0

th1: x<0 và x-8>0

 x<0 và x>8

<=> 8<x<0 ( vô lý)

th2: x>0 và x-8<0

<=> x>0 và x<8

<=> 0<x<8( tm)

vậy........

20 tháng 4 2019

a) \(x^2-8x< 0\)

\(\Leftrightarrow x\left(x-8\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\)         hoặc   \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)

\(\Leftrightarrow0< x< 8\)

b) \(x^2< 6x-5\)

\(\Leftrightarrow x^2-6x+5< 0\)

\(\Leftrightarrow x^2-x-5x+5< 0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\)          hoặc  \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)

\(\Leftrightarrow1< x< 5\)

c) \(\frac{x-3}{x-2}< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\)  (loại)  hoặc  \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)

\(\Leftrightarrow2< x< 3\)

d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )

\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)

\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)

\(\Leftrightarrow\frac{-x+7}{x-3}>0\)

\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\)     hoặc  \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)  

\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\)              hoặc   \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)

\(\Leftrightarrow3< x< 7\)

3 tháng 9 2018

giải giúp mik vs các bn ơi

3 tháng 9 2018

\(x^2-8x+16< 0\)

\(\Leftrightarrow\left(x-4\right)^2< 0\)

\(\Rightarrow\)vô lí 

20 tháng 4 2019

Bài 2 :

a, \(\frac{1-5x}{x-1}\ge1\)

\(\Leftrightarrow\frac{1-5x}{x-1}\ge\frac{x-1}{x-1}\)

\(\Rightarrow1-5x\ge x-1\)

\(\Leftrightarrow-5x-x\ge-1-1\)

\(\Leftrightarrow-6x\ge-2\)

\(\Leftrightarrow x\le\frac{1}{3}\)

Vậy nghiệm của bất phương trình là \(x\le\frac{1}{3}\).

b, \(\frac{x}{x-2}-\frac{2}{x-3}>1\)

\(\Leftrightarrow\frac{x^2-3x}{x^2-5x+6}-\frac{2x-4}{x^2-5x+6}>\frac{x^2-5x+6}{x^2-5x+6}\)

\(\Rightarrow x^2-3x-2x+4>x^2-5x+6\)

\(\Leftrightarrow x^2-3x-2x-x^2+5x>6-4\)

\(\Leftrightarrow0>2\) ( vô lí )

Vậy bất phương trình vô nghiệm.

20 tháng 4 2019

Bài 1:

a, \(x^2-8x< 0\)

\(\Leftrightarrow x\left(x-8\right)< 0\)

\(\Leftrightarrow x< 0\) hoặc \(x-8< 0\)

\(\Leftrightarrow x< 0\) hoặc \(x< 8\)

Vậy nghiệm của bất phương trình : x<0 ; x<8

b, \(x^2< 6x-5\)

\(\Leftrightarrow x^2-6x+5< 0\)

\(\Leftrightarrow x^2-x-5x+5< 0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\) \(x-1< \) 0 hoặc \(x-5< 0\)

\(\Leftrightarrow x< 1\) hoặc \(x< 5\)

Vậy bất phương trình có nghiệm là x<1 ; x<5

NV
1 tháng 4 2020

a/ \(\Leftrightarrow x^2-6x+9< 0\)

\(\Leftrightarrow\left(x-3\right)^2< 0\)

BPT vô nghiệm

b/ \(\Leftrightarrow12x^2-3x+1>0\)

\(\Leftrightarrow12\left(x-\frac{1}{8}\right)^2+\frac{13}{16}>0\) (luôn đúng)

Vậy tập nghiệm của BPT là \(D=R\)

c/ \(\Leftrightarrow2\left(x-4\right)\left(x-1\right)\left(x-3\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}1< x< 3\\x>4\end{matrix}\right.\)

NV
8 tháng 3 2020

1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)

\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)

2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)

\(\Rightarrow\frac{3}{2}< x< 2\)

3. \(\Leftrightarrow\left(5x-3\right)^2>0\)

\(\Rightarrow x\ne\frac{3}{5}\)

4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)

\(\Rightarrow x\in R\)

5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)

\(\Rightarrow x\in R\)

NV
8 tháng 3 2020

6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)

\(\Rightarrow-2\le x\le-\frac{7}{8}\)

7.

\(\Leftrightarrow\left(x-1\right)^2+2>0\)

\(\Rightarrow x\in R\)

8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)

9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)

\(\Rightarrow-6< x< -3\)

10. \(\Leftrightarrow x^2-6x+9>0\)

\(\Leftrightarrow\left(x-3\right)^2>0\)

\(\Rightarrow x\ne3\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Tam thức \(f(x) =  - 5{x^2} + x - 1\) có \(\Delta  =  - 19 < 0\), hệ số \(a =  - 5 < 0\) nên f(x) luôn âm (cùng dấu với a) với mọi x, tức là \(\)\( - 5{x^2} + x - 1 < 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm

b) Tam thức \(g(x) = {x^2} - 8x + 16\) có \(\Delta  = 0\), hệ số a=1>0 nên g(x) luôn dương (cùng dấu với a) với mọi \(x \ne 4\), tức là \({x^2} - 8x + 16 > 0\) với mọi \(x \ne 4\)

Suy ra bất phương trình có nghiệm duy nhất là x = 4

c) Tam thức \(h(x) = {x^2} - x + 6\) có \(\Delta  =  - 23 < 0\), hệ số a=1>0 nên h(x) luôn dương (cùng dấu với a) với mọi x, tức là \({x^2} - x + 6 > 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm.

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

24 tháng 4 2019

a) \(\left(x+\frac{1}{9}\right)\left(2x-5\right)< 0\)

TH1 : \(\hept{\begin{cases}x+\frac{1}{9}>0\\2x-5< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{9}\\x< \frac{5}{2}\end{cases}}\)

\(\Leftrightarrow\frac{-1}{9}< x< \frac{5}{2}\)( thỏa )

TH2 : \(\hept{\begin{cases}x+\frac{1}{9}< 0\\2x-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x< -\frac{1}{9}\\x>\frac{5}{2}\end{cases}}\)

\(\Leftrightarrow\frac{5}{2}< x< -\frac{1}{9}\)( loại )

Vậy....

24 tháng 4 2019

b) \(x^2-6x+9< 0\)

\(\Leftrightarrow\left(x-3\right)^2< 0\)( vô lý )

Vậy bpt vô nghiệm

3 tháng 3 2020

a,

đoạn 9x-6-> 2x-6=0

=> x=3

b,6x^2+13x+5=6x^2-20x+6

33x=1

=>x=1/33

3 tháng 3 2020

a) (x+1)(x+9)=(x+3)(x+5) 

<=>x^2+10x+9=x^2+8x+15

<=>x^2+10x+9-x^2-8x-15=0

<=>9x-6=0 phải là 2x - 6

<=>9x=6

<=>x=6/9=2/3 => S= 2/3

d) (3x+5)(2x+1)=(6x-2)(x-3)

<=>6x^2+13x+5=6x^2-16x+6 phải là 6x^2 - 20x + 6

<=>6x^2+13x+5-6x^2+16x-6=0

<=>29x-1=0

<=>29x=1

<=>x=1/29