Cho 4 điểm A( 1;0), B(0;1), C(-1;0), D(0;-1)
a) CMR: ABCD là hình vuông
b) Tìm phương trình đường thẳng AB,BD,AC
c) Tìm phương trình đường thẳng đi qua trung điểm AB và CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Gọi \(D\left(a;0\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-9;3\right)\\\overrightarrow{AD}=\left(a-6;-3\right)\end{matrix}\right.\)
Do A; B; D thẳng hàng \(\Leftrightarrow\frac{a-6}{-9}=\frac{-3}{3}\Rightarrow a=15\) \(\Rightarrow D\left(15;0\right)\)
b/ \(\overrightarrow{AB}=\left(-1;5\right);\) \(\overrightarrow{AD}=\left(-2;10\right)\)
\(\Rightarrow\overrightarrow{AD}=2\overrightarrow{AB}\Rightarrow A,B,D\) thẳng hàng
a. điểm O nằm giữa 2 điểm còn lại
b. ta có : OA + OB = AB
hay 5 + OB = 10
OB = 10 - 5 = 5(cm)
c. vì \(OA=OB=\dfrac{AB}{2}=5\left(cm\right)\)
nên O là trung điểm AB
Chọn 1 trong 4 điểm ta vẽ được 3 đường thẳng đi qua 2 điểm
Cứ làm như thế với 4 điểm đó ta vẽ được : 4.3=12 đường thẳng
Vì mỗi đường thẳng được tính 2 lần
=> Số đường thẳng được tạo thành là 12:2=6
Ta có: \(\overrightarrow {AD} \left( { - 2;10} \right),{\mkern 1mu} \overrightarrow {AB} \left( { - 1;5} \right) \Rightarrow \overrightarrow {AD} = 2\overrightarrow {AB} \)
\(\Rightarrow\) 3 điểm \(A,B,D\) thẳng hàng.
Tọa độ trung điểm I của AB là:
\(\left\{{}\begin{matrix}x=\dfrac{1+1}{2}=1\\y=\dfrac{3-1}{2}=\dfrac{2}{2}=1\\z=\dfrac{5+1}{2}=\dfrac{6}{2}=3\end{matrix}\right.\)
vậy: I(1;1;3)
\(\overrightarrow{DA}=\left(1;-1\right)\)
\(\overrightarrow{DC}=\left(4;4\right)=4\left(1;1\right)\)
\(\Rightarrow\overrightarrow{DC}=4\overrightarrow{DA}\) nên 4 điểm D, A, C thẳng hàng