Cho 0o < x < 90o, CM các biểu thức sau không phụ thuộc vào biến:
sin\(^6\)x +cos\(^6\)x-2sin\(^4\)x - cos\(^4\)x + sin\(^2\)x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(B=sin^2x\left(sin^2x+cos^2x\right)+cos^2x\)
\(=sin^2x+cos^2x=1\)
c: \(=cos^2x\left(cos^2x+sin^2x\right)+cos^2x\)
=cos^2x+cos^2x
=2*cos^2x có phụ thuộc vào x nha bạn
1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)
\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)
Vậy...
2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)
\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)
\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)
\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)
Vậy...
3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)
\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)
\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)
Vậy...
4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)
\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)
\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)
Vậy...
5, Xem lại đề
6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)
\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)
Vậy...
điều kiện xác định \(cotx;sinx\ne0\)
ta có : \(\dfrac{cot^2x-cos^2x}{cot^2x}+\dfrac{sinx.cosx}{cotx}=\dfrac{cot^2x-cos^2x}{cot^2x}+\dfrac{cos^2x}{cot^2x}\)
\(=\dfrac{cot^2x-cos^2x+cos^2x}{cot^2x}=\dfrac{cot^2x}{cot^2x}=1\) (không phụ thuộc vào \(x\)) (đpcm)
ta có : \(\dfrac{tan^2x-cos^2x}{sin^2x}+\dfrac{cot^2x-sin^2x}{cos^2x}=\dfrac{1}{cos^2x}-cot^2x+\dfrac{1}{sin^2x}-tan^2x\)
\(=\dfrac{1}{cos^2x}-tan^2x+\dfrac{1}{sin^2x}-cot^2x=\dfrac{1}{cos^2x}-\dfrac{sin^2x}{cos^2x}+\dfrac{1}{sin^2x}-\dfrac{cos^2x}{sin^2x}\)
\(=\dfrac{1-sin^2x}{cos^2x}+\dfrac{1-cos^2x}{sin^2x}=\dfrac{cos^2x}{cos^2x}+\dfrac{sin^2x}{sin^2x}=1+1=2\) không phụ thuộc vào \(x\) (đpcm)
\(A=sin^6x+sin^4x.cos^2x+2\left(sin^2x.cos^4x+sin^4x.cos^2x\right)+cos^4x\)
\(=sin^4x\left(sin^2x+cos^2x\right)+2sin^2x.cos^2x\left(sin^2x+cos^2x\right)+cos^4x\)
\(=sin^4x+2sin^2x.cos^2x+cos^4x\)
\(=\left(sin^2x+cos^2x\right)^2=1\)
chứng minh dk thì chắc là thiên tài bạn ạ...ở đâu chắc k có hs l10 đâu bạn ....
TOÁN LỚP 10
chứng minh rằng biểu thức sau không phụ thuộc vào x :
P = sin2x+cos2x(2sin2x+cos2x)
\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)+4cos^6x-8sin^6x+6sin^4x\)
\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)+4cos^6x-2sin^6x+6sin^4x\left(1-sin^2x\right)\)
\(=sin^6x+3sin^4x.cos^2x+3cos^2x.sin^4x+cos^6x\)
\(=\left(sin^2x+cos^2x\right)^3=1\)
ta có : \(sin^6x+cos^6x-2sin^4x-cos^4x+sin^2x\)
\(=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-2sin^4x-cos^4x+sin^2x\)
\(=1-3sin^2x.cos^2x-2sin^4x-cos^4x+sin^2x\)
\(=1-2sin^2x.cos^2x-2sin^4x-sin^2x.cos^2x+sin^2x-cos^4 x\)
\(=1-2sin^2x\left(cos^2x+sin^2x\right)-sin^2x\left(cos^2x-1\right)-cos^4x\)
\(=1-2sin^2x+sin^4x-cos^4x=1-2sin^2x+\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)
\(=1-2sin^2x+sin^2x-cos^2x=1-sin^2x-cos^2x\)
\(=1-1=0\) (không phụ thuộc vào biến \(x\)) (đpcm)
Thanks nhiều ạk !!!!!!!