Cho hai số lẻ có hiệu lập phương chia hết cho 8. Chứng minh hiệu hai số đó cũng chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi 2 số lẻ đó là a và b.
Ta có:
\(a^3-b^3\) chia hết cho 8
=> \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)chia hết cho 8
=> \(\left(a-b\right)\) chia hết cho 8 (đpcm)
Gọi hai số lẻ bất kì là 2a + 1 và 2b + 1 (a, b ∈ Z).
Hiệu bình phương của hai số lẻ đó bằng:
(2a + 1)2 – (2b + 1)2
= (4a2 + 4a + 1) – (4b2 + 4b + 1)
= (4a2 + 4a) – (4b2 + 4b)
= 4a(a + 1) – 4b(b + 1)
Tích của hai số tự nhiên liên tiếp luôn chia hết cho 2
⇒ a.(a + 1) ⋮ 2 và b.(b + 1) ⋮ 2.
⇒ 4a(a + 1) ⋮ 8 và 4b(b + 1) ⋮ 8
⇒ 4a(a + 1) – 4b(b + 1) ⋮ 8.
Vậy (2a + 1)2 – (2b + 1)2 chia hết cho 8 (đpcm).
Gọi hai số lẻ đó là 2k+1 và 2k+3 (k\(\in\)Z)
Ta có:
(2k+3)\(^2\)- (2k+1)\(^2\)= (2k+3+2k+1)(2k+3-2k-1)
= (4k+4).2
=8.(k+1)
Vì 8\(⋮\)8 \(\Rightarrow\)8.(k+1) \(⋮\)8
\(\Leftrightarrow\) (2k+3)\(^2\)-(2k+1)\(^2\)\(⋮\)8 (đpcm)
Gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
\(\Rightarrow\left(2a+1\right)^2-\left(2a+3\right)^2=\left(2a+1+2a+3\right)\left(2a+1-2a-3\right)\)
\(=\left(4a+4\right).\left(-2\right)=4\left(a+1\right)\left(-2\right)=-8\left(a+1\right)\)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy bình phương của 2 số lẻ liên tiếp chia hết cho 8
Theo đề bài các số dư ={1;3;5;7}
=> có ít nhất 2 số khi chia cho 15 có cùng số dư ta gọi 2 số đó là là a và b
\(\Rightarrow a\equiv b\) (mod 15) \(\Rightarrow a-b⋮15\)
Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8
Gọi 2 số lẻ đó lần lượt là 2k+1 và 2a+1
(2k+1)2-(2a+1)2
= 4k2+4k+1-4a2-4a-1
= 4(k2+k+a2+a)
Như vậy ta đã chứng minh được nó chia hết cho 4 giờ ta chứng minh k2+k+a2+a chia hết cho 2,
Thật vậy ta có k2+k=k(k+1) ; a2+a=a(a+1)
Do 2 số tự nhiên liên tiếp luôn chia hết cho 2 suy ra a2+a và k2+k chia hết cho 2
Suy ra a2+a+k2+k chia hết cho 2
Như vậy bài toán được chứng minh
gọi 2 số lẻ bất kì lần lượt là 2a + 1 và 2a + 3
Cần chứng minh (2a + 1)2 - (2a + 3)2 chia hết cho 8
có: (2a + 1)2 - (2a + 3)2 = 4x2 + 4x + 1 - 4x2 - 12x - 9 = -8x - 8 = -8 (x + 1)
-8 (x + 1) chia hết cho 8
=> (đpcm)
Gọi 2 lẻ bất kì là a và b
Phải chứng minh a2-b2 chia hết cho 8
Do a2 và b2 là số chính phương nên chia 8 chỉ có thể dư 0;1 hoặc 4. Mà a, b lẻ nên a2 và b2 lẻ suy ra a2 và b2 chia 8 dư 1
Suy ra a2-b2 chia hết cho 8
Chứng tỏ hiệu các bình phương của 2 số lẻ bất kì thí chia hết cho 8
Gọi 2 số lẻ liên tiếp là:
2k−1và
2k+1
Xét hiệu:
A=(2k+1)^2−(2k−1)^2
=4k^2+4k+1−(4k^2−4k+1)
=8k ⋮8
⇒A⋮8
hay hiệu các bình phương của 2 số lẻ liên tiếp chia hết cho 8