K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

\(B=\frac{x^2-2x+2018}{x^2}=\frac{2018x^2-2.2018.x+2018^2}{2018x^2}\)

\(=\frac{x^2-2.2018.x+2018^2}{2018x^2}+\frac{2017x^2}{2018x^2}\)

\(=\frac{\left(x-2018\right)^2}{x^2}+\frac{2017}{2018}\)

\(=\left(\frac{x-2018}{x}\right)^2+\frac{2017}{2018}\)

Vì : \(\left(\frac{x-2018}{x}\right)^2\ge0\forall x\)

Nên : \(B=\left(\frac{x-2018}{x}\right)^2+\frac{2017}{2018}\ge\frac{2017}{2018}\)

Vậy \(B_{min}=\frac{2017}{2018}\) khi x = 2018

2 tháng 9 2018

\(\Leftrightarrow Bx^2-x^2+2x-2018=0\)
\(\Leftrightarrow\left(B-1\right)x^2+2x-2018=0\)
Để tồn tại x thì \(\Delta^'\ge0\)
\(\Leftrightarrow1+2018\left(B-1\right)\ge0\)
\(\Leftrightarrow B\ge\frac{2017}{2018}\)
Vậy MinB=2017/2018, dấu bằng xảy ra khi x=2018
 

12 tháng 9 2017

ta có \(A=\frac{2x+1}{x^2}=\frac{x^2+2x+1-x^2}{x^2}=\frac{\left(x+1\right)^2}{x^2}-1\)

vì \(\frac{\left(x+1\right)^2}{x^2}\ge0\Rightarrow A\ge-1\)

dấu = xảy ra <=> x=-1

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

A min =\(\frac{2006}{2007}\)khi \(x-2007=0\)

\(\Leftrightarrow x=2007\)

17 tháng 3 2020

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)

\(A=\frac{x^2-2x.2007-2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(A=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

\(\Rightarrow Amin=\frac{2006}{2007}\)khi \(x-2007=0\)

\(\Rightarrow x=2007\)

11 tháng 4 2019

Bài 1a) 

\(P\left(x\right)=x^{2018}+4x^2+10\)

VÌ \(x^{2018}\ge0\forall x;4x^2\ge0\forall x\)

\(\Rightarrow x^{2018}+4x^2+10\ge10\forall x\)

Hay \(P\left(x\right)\ge10\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

11 tháng 4 2019

Bài 1b)

\(M\left(x\right)=x^2+x+1\)

\(M\left(x\right)=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(M\left(x\right)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)

2 tháng 2 2018

2, TC: \(\frac{5x^2-4x+4}{x^2}=\frac{4x^2+x^2-4x+4}{x^2}\)\(=\frac{4x^2}{x^2}+\frac{\left(x-2\right)^2}{x^2}=4+\frac{\left(x-2\right)^2}{x^2}\)

Ta có \(\frac{\left(x-2\right)^2}{x^2}\ge0\forall x\left(x\ne0\right)\)\(\Rightarrow4+\frac{\left(x-2\right)^2}{x^2}\ge4\)

Vậy GTNN của A là 4 tại \(\frac{\left(x-2^2\right)}{x^2}=0\Rightarrow x=2\)

22 tháng 1 2018

Bài này mài kiếm đâu ra z mk hềnh như bài này ta lm oy mk

22 tháng 1 2018
làm r đạ may
10 tháng 2 2021

Ta có: \(P=\frac{2016x^2-2x+1}{x^2}=\frac{2015x^2+\left(x^2-2x+1\right)}{x^2}\)

\(=2015+\frac{\left(x-1\right)^2}{x^2}\ge2015\left(\forall x\ne0\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy Min(P) = 2015 khi x = 1

Ta có : \(P=\frac{2016x^2-2x+1}{x^2}\)

\(=\frac{2015x^2+\left(x-1\right)^2}{x^2}\)

\(=2015+\left(\frac{x-1}{x}\right)^2\)

Vì \(\left(\frac{x-1}{x}\right)^2\ge0\forall x\ne0\)

\(\Rightarrow P\ge2015\forall x\ne0\)

Dấu \("="\) xảy ra \(\Leftrightarrow\left(\frac{x-1}{x}\right)^2=0\)

\(\Leftrightarrow\frac{x-1}{x}=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy \(MinP=2015\Leftrightarrow x=1\)

12 tháng 3 2021

\(P-2015=\dfrac{\left(x-1\right)^2}{x^2}\ge0\) nên \(P\ge2015\), xảy ra dấu bằng khi x = 1.

2 tháng 4 2017

\(A=\frac{x^2-2x+2011}{x^2}=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2011}{x^2}=1-\frac{2}{x}+\frac{2011}{x^2}\)

Đặt \(t=\frac{1}{x}\) ta có: \(A=2011t^2-2t+1\)

\(\Leftrightarrow A=2011t^2-2t+\frac{1}{2011}+\frac{2010}{2011}\)

\(\Leftrightarrow A=2011\left(t^2-\frac{2t}{2011}+\frac{1}{2011^2}\right)+\frac{2010}{2011}\)

\(\Leftrightarrow A=2011\left(t-\frac{1}{2011}\right)^2+\frac{2010}{2011}\ge\frac{2010}{2011}\)

Đẳng thức xảy ra khi \(t=\frac{1}{2011}\Leftrightarrow x=2011\)

1 tháng 5 2017

Ta có:\(\frac{x^2-2x+2011}{x^2}\ge\frac{2010}{2011}\Rightarrow2011\left(x^2-2x+2011\right)\ge2010x^2\)

\(\Rightarrow2011x^2-2x2011+2011^2\ge2010^2\)

\(\Rightarrow2011x^2-2x2011+2011-2010x^2\ge0\)

\(\Rightarrow x^2-2x2011+2011^2\ge0\)

\(\Rightarrow\left(x-2011\right)^2\ge0\)(đúng)

\(\Rightarrow\)đpcm