chứng minh
2a + 4b chia hết cho 23 \(\Leftrightarrow\) 8a +3b chia hết cho 23
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu 3a+4b chia hết cho 23 thì 8.(3a+4b)=24a+32b (1) chia hết cho 23
Ta xét biểu thức 3.(8a+3b)=24a+9b (2)
Lấy (1) trừ đi (2) được (24a+32b)-(24a+9b)=24a+32b-24a-9b=23b chia hết cho 23
Vậy 8.(3a+4b)-3.(8a+3b) chia hết cho 23
Mà 8.(3a+4b) chia hết cho 23
=> 3.(8a+3b) chia hết cho 23, mà (8;23)=1
=>8a+3b chia hết cho 23
Ngược lại thì bạn xét biểu thức 3.(8a+3b)-8.(3a+4b), làm tương tự như trên
Ta thấy \(\left(2a+3b\right)+\left(5a+4b\right)=7a+7b⋮7\)
Mà \(2a+3b⋮7\) nên \(5a+4b⋮7\). Ta có đpcm.
ta có: 23a + 23b chia hết cho 23
=> 7a + 3b + 16a + 20b chia hết cho 23
=> 7a + 3b + 4(4a + 5b) chia hết cho 23
do 7a + 3b chia hết cho 23 nên 4(4a + 5b) chia hết cho 23
mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23
tíck cho mình nhé
Ta có :
4 . ( 7a + 3b ) - 7. ( 4a + 5b ) = 28a + 12b - 28a + 35b = -23b
=> 4.( 7a + 3b ) - 23b = 7 . ( 4a + 5b )
Mà 4. ( 7a + 3b ) và -23b đều chia hết cho 23 nên 7 . ( 4a + 5b ) cũng chia hết cho 23
Vì 7 không chia hết cho 23 nên 4a + 5b chia hết cho 23
=> đpcm
Ta có: 23a + 23b chia hết cho 23
=> 7a + 3b + 16a + 20b chia hết cho 23
=> 7a + 3b + 4(4a + 5b) chia hết cho 23
do 7a + 3b chia hết cho 23 nên 4(4a + 5b) chia hết cho 23
mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23
ta có: 23a + 23b chia hết cho 23
=> 7a + 3b + 16a + 20b chia hết cho 23
=> 7a + 3b + 4(4a + 5b) chia hết cho 23
do 7a + 3b chia hết cho 23 nên 4(4a + 5b) chia hết cho 23
mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23
Giả sử: \(\overline{abc}+\left(2a+3b+c\right)\)chia hết cho7, ta có:
\(\overline{abc}+\left(2a+3b+c\right)=a.100+b.10+c+2a+3b+c=a.98+7.b\)
Vì \(a.98\) chia hết cho 7(98 chia hết cho 7)\(7.b\) chia hết cho 7 \(\Rightarrow a.98+b.7\) chia hết cho 7
\(\Rightarrow\overline{abc}+\left(2a+3b+c\right)\)chia hết cho 7
Mà theo đầu đề bài \(\overline{abc}\)chia hết cho 7 => 2a+3b+c chia hết cho 7
\(4\left(a+5b\right)+\left(19a+3b\right)=23a+23b⋮23\)
Mà \(a+5b⋮23\Rightarrow19a+3b⋮23\)
Ta có: 7a+3b⋮23⇒6(7a+3b)⋮237a+3b⋮23⇒6(7a+3b)⋮23
⇒6(7a+3b)+(4a+5b)⋮23⇒6(7a+3b)+(4a+5b)⋮23
⇒46a+23b⋮23⇒23(2a+b)⋮23⇒46a+23b⋮23⇒23(2a+b)⋮23(Đúng)
Vậy 4a+5b⋮23
- Nếu \(2a+3b⋮7\Rightarrow4\left(2a+3b\right)⋮7\Rightarrow8a+12b⋮7\)
\(\Rightarrow8a+5b+7b⋮7\)
Mà \(7b⋮7\) với mọi b nguyên \(\Rightarrow8a+5b⋮7\)
- Nếu \(8a+5b⋮7\), do \(7b⋮7\Rightarrow8a+5b+7b⋮7\Rightarrow8a+12b⋮7\)
\(\Rightarrow4\left(2a+3b\right)⋮7\)
Mà 4 và 7 nguyên tố cùng nhau \(\Rightarrow2a+3b⋮7\)
Ta có 4a+5b chia hết cho 23 => 4(4a+5b)=16a+20b chia hết cho 23
16a+20b+7a+3b = 23a+23b chia hết cho 23
mà 16a+20b chia hết cho 23 nên 7a+3b chia hết cho 23 (dpcm)