Bài 1 : Vẽ hình tam giác ABC với trọng tâm G và ba đường trung tuyến.
Bài 2 : Vẽ tam giác ABC với ba đường cao và trực tâm H.
Bài 3 : Vẽ tam giác ABC với ba đường phân giác cắt nhau tại điểm \(\text{I}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; Xét ΔABC có
H là trung điểm của BC
HK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có
AH là đường trung tuyến
BK là đường trung tuyến
AH cắt BK tại G
Do đó: G là trọng tâm của ΔABC
b: Xét ΔABC có
G là trọng tâm
CI là đường trung tuyến
Do đó: C,I,G thẳng hàng
c: Xét tứ giác AIHK có
HK//AI
HK=AI
Do đó: AIHK là hình bình hành
mà AI=AK
nên AIHK là hình thoi
=>KI là đường trung trực của AH
a,
Ta có ON // BH ( cùng vuông góc với AC )
OM // AH ( cùng vuông góc với BC )
MN // AB ( MN là đường trung bình của tam giác ABC )
Vậy tam giác OMN đồng dạng với tam giác HAB.
b,
Xét tam giác AHG và MOG có :
\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )
\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )
Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)
Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)
\(\Rightarrow H,G,O\)thẳng hàng
Bài 1 : Tam giác ABC với trọng tâm G và ba đường trung tuyến là AF, BE, CD.
Bài 2 : Tam giác ABC với ba đường cao và trực tâm H.
Bài 3 : Tam giác ABC với ba đường phân giác cắt nhau tại \(\text{I}\).