K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

Bài 1 : Tam giác ABC với trọng tâm G và ba đường trung tuyến là AF, BE, CD.

A B C D E F G

Bài 2 : Tam giác ABC với ba đường cao và trực tâm H.

A B c H

Bài 3 : Tam giác ABC với ba đường phân giác cắt nhau tại \(\text{I}\).

A B C I

30 tháng 3 2022
Ai giúp em với😢

hông biết

a; Xét ΔABC có 

H là trung điểm của BC

HK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có 

AH là đường trung tuyến

BK là đường trung tuyến

AH cắt BK tại G

Do đó: G là trọng tâm của ΔABC

b: Xét ΔABC có

G là trọng tâm

CI là đường trung tuyến

Do đó: C,I,G thẳng hàng

c: Xét tứ giác AIHK có 

HK//AI

HK=AI

Do đó: AIHK là hình bình hành

mà AI=AK

nên AIHK là hình thoi

=>KI là đường trung trực của AH

a, 

Ta có ON // BH ( cùng vuông góc với AC )

OM // AH ( cùng vuông góc với BC )

MN // AB ( MN là đường trung bình của tam giác ABC )

Vậy tam giác OMN đồng dạng với tam giác HAB.

b,

Xét tam giác AHG và MOG có :

\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )

\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )

Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)

Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)

\(\Rightarrow H,G,O\)thẳng hàng