A = 19^2005 + 11^2004 chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
a,19^2005+ 11^2004 =19^4.501.19
=x1.x9
=x9
11^2004=11^4.501
=x1
x1+x9= y0
suy ra điều cần phải chứng minh
tương tự 2 câu còn lại
b: \(B=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\cdot\left(2+...+2^{59}\right)⋮3\)
\(B=2+2^2+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Ta có:
\(19\equiv9\left(mod10\right)\)
\(11=1\left(mod10\right)\)
\(\Rightarrow19^{2005}+11^{2004}⋮10\)
a) 5+52+53+54+...+5100
= (5+52)+(53+54)+...+(599+5100)
= 30+52.(5+52)+...+598.(5+52)
= 30+52.30+...+598.30
= 30.(1+52+...+598)
Vì 30 chia hết cho 10
=> 30.(1+52+...+598) chia hết cho 10
=> 5+52+53+...+5100 chia hết cho 10
Ta thấy: 19 đồng dư với 9(mod 10)
=>19 đồng dư với -1(mod 10)
=>192004 đồng dư với (-1)2004(mod 10)
=>192004 đồng dư với 1(mod 10)
=>192004.19 đồng dư với 1.9(mod 10)
=>192005 đồng dư với 9(mod 10)
Lại có: 11 đồng dư với 1(mod 10)
=>112004 đồng dư với 12004(mod 10)
=>112004 đồng dư với 1(mod 10)
=>192005+112004 đồng dư với 9+1(mod 10)
=>192005+112004 đồng dư với 10(mod 10)
=>192005+112004 đồng dư với 0(mod 10)
=>192005+112004 chia hết cho 10
19^2005 = (10+9) ^2005 = 9^2005
mà 9 = -1 (mod 10) => 9^2005 = (-1)^2005 (mod 10) = -1 (mod 10)
11^2004 = 1^2004 (mod 10) = 1(mod 10)
=> 19^2005 + 11^2004 = -1 +1 (mod 10) = 0 (mod 10)
=> 19^2005 + 11^2004 chia hết cho 10
Ta có: \(19^2\equiv1\left(mod10\right)\)
\(\left(19^2\right)^{1002}\equiv1^{1002}\equiv1\left(mod10\right)\)
\(\Rightarrow19^{2004}\cdot19\equiv1\cdot9\equiv9\left(mod10\right)\) (*)
Ta có: \(11\equiv1\left(mod10\right)\)
\(11^{2004}\equiv1^{2004}\equiv1\left(mod10\right)\)(**)
Từ (*);(**)
=> \(A=19^{2005}+11^{2004}\equiv9+1\equiv10\left(mod10\right)\)
=> A⋮10(đpcm)
Ta có: \(19^{2015}=19^{2014}.19=\left(19^2\right)^{1007}.19=\left(...1\right)^{1007}.19=\left(...1\right).19=\left(...9\right)\)
Và \(11^{2014}=\left(...1\right)\)
\(\Rightarrow19^{2015}+11^{2014}=\left(...9\right)+\left(...1\right)=\left(...0\right)⋮10\)
\(\Rightarrow A\) \(⋮\) \(10\)
Vậy \(A\) \(⋮\) \(10.\)