K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

a) Giả sử ƯCLN(a;2a-1)=d. Khi đó a và 2a-1 cùng chia hết cho d, suy ra 2a-(2a-1)=1 chia hết cho d hay d=1 và ƯCLN(a;2a-1)=1 nên (a;2a-1) là nguyên tố cùng nhau với bất ký a thuộc N (đpcm)

b) Giả sử ƯCLN(a;6a-1)=d. Khi đó a và 6a-1 cùng chia hết cho d, suy ra 6a-(6a-1)=1chia hết cho d hay d=1 và ƯCLN(a;6a-1)=1 nên (a;6a-1) là nguyên tố cùng nhau với bất ký a thuộc N (đpcm)

18 tháng 12 2021

Em tham khảo:

Gọi d là ƯCLN (2a + 1; 6a + 4) Nên ta có :

2a + 1 ⋮ d và 6n + 4 ⋮ d

=> 3 ( 2a + 1 ) ⋮ d và 6n + 4 ⋮ d

=> 6a + 3 ⋮ d và 6a + 4 ⋮ d

=> (6a + 4) - (6a + 3) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN (2a + 1; 6a + 4) = 1 => 2a + 1 và 6a + 4 là nguyên tố cùng nhau ( đpcm )

18 tháng 12 2021

Gọi d là ƯC(2a+1;6a+4)             (d thuộc N*)

=> 2a+1 chia hết cho d;6a+4 chia hết cho d

=>3(2a+1) chia hết cho d hay 6a+3 chia hết cho d

=>(6a+4)-(6a+3) chia hết cho d

     6a+4-6a-3     chia hết cho d

     (6a-6a)+(4-3) chia hết cho d

                  1     chia hết cho d

=> d=1

=> 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*) 

      Vậy 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*)

14 tháng 12 2017

Gọi d là UCLN(2a;6a+1)

Ta có : 

2a \(⋮\)d => 2.2a\(⋮\)d => 6a \(⋮\)d     (1)

6a + 1 \(⋮\)d   (2)

Lấy (2) - ( 1)  < = > 6a + 1 - 6a = 1 \(⋮\)d

< = > d = 1

Vậy 2a và 6a +1  là hai số nguyên tố cùng nhau

27 tháng 12 2020

Gọi ƯCLN(2a + 1 ; 6a + 4) = d

=> \(\hept{\begin{cases}2a+1⋮d\\6a+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2a+1\right)⋮d\\6a+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6a+3⋮d\\6a+4⋮d\end{cases}}\Rightarrow\left(6a+4\right)-\left(6a+3\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

Vậy 2a + 1 ; 6a + 4 là 2 số nguyên tố cùng nhau 

5 tháng 1 2019

Gọi d là ƯCLN (2a + 1; 6a + 4) Nên ta có :

2a + 1 ⋮ d và 6n + 4 ⋮ d

=> 3 ( 2a + 1 ) ⋮ d và 6n + 4 ⋮ d

=> 6a + 3 ⋮ d và 6a + 4 ⋮ d

=> (6a + 4) - (6a + 3) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN (2a + 1; 6a + 4) = 1 => 2a + 1 và 6a + 4 là nguyên tố cùng nhau ( đpcm )

5 tháng 1 2019

\(\text{Gọi }d=\left(2a+1,6a+4\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2a+1\right)⋮d\left(1\right)\\\left(6a+4\right)⋮d\end{cases}}\)

\(\text{Từ ( 1 ) suy ra }3\left(2a+1\right)=\left(6a+3\right)⋮d\)

\(\Rightarrow\left[\left(6a+4\right)-\left(6a+3\right)\right]⋮d\)

\(\Rightarrow1⋮d\text{ hay }d=1\) 

\(\text{Vậy hai số 2a + 1 và 6a + 4 nguyên tố cùng nhau}\)

6 tháng 3 2016

Giai:

Goi UC(2a+1;6a+4) la d

=>2a+1 chia het d va 6a+4 chia het d

=>(6a+4) - 3(2a+1) chia het d

=>(6a+4) - (6a+3) chia het d

=>     1 chia het d=>d thuoc U(1)={1}

vay 2a+1 va 6a+4 la 2 so nguyen to cung nhau

AH
Akai Haruma
Giáo viên
31 tháng 10

Lời giải:
$a=1+2+...+n=\frac{n(n+1)}{2}$

$b=2n+1$

Giả sử $a,b$ không nguyên tố cùng nhau. Gọi $p$ là ước nguyên tố lớn nhất của $a,b$.

$\Rightarrow a=\frac{n(n+1)}{2}\vdots p; b=2n+1\vdots p$

Có:

$\frac{n(n+1)}{2}\vdots p\Rightarrow n\vdots p$ hoặc $n+1\vdots p$

Nếu $n\vdots p$. Kết hợp với $2n+1\vdots p\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý) 

Nếu $n+1\vdots p$. Kết hợp với $2n+1\vdots p\Rightarrow 2(n+1)-(2n+1)\vdots p$

$\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý)

Vậy điều giả sử là sai. Tức là $a,b$ là hai số nguyên tố cùng nhau. 

13 tháng 12 2015

Gọi d là ƯC(2a+1;6a+4)             (d thuộc N*)

=> 2a+1 chia hết cho d;6a+4 chia hết cho d

=>3(2a+1) chia hết cho d hay 6a+3 chia hết cho d

=>(6a+4)-(6a+3) chia hết cho d

     6a+4-6a-3     chia hết cho d

     (6a-6a)+(4-3) chia hết cho d

                  1     chia hết cho d

=> d=1

=> 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*) 

      Vậy 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*)