K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

(x+1) + (2x+2) + (3x+3) + ...+ (10x+10) = 550

( x + 2x + 3x + ...+ 10x) + (1+2+3+..+10) = 550

x.(1+2+3+...+10) + 55 = 550

x.55 + 55 = 550

55.(x+1) = 550

x+ 1 = 10

x = 9

31 tháng 8 2018

(x+1)+(2x+2)+.....+(10x+10)=550

x+1+2x+2+...+10x+10=550

(x+2x+3x+...+10x)+(1+2+3+4+...+10)=550

x nhân (1+2+3+...+10)+1 nhân (1+2+3+...+10)=550

(1+2+3+...+10) nhân (x+1)=550

55 nhân (x+1)=550 =>x+1=550:55=10

                                                 x   =9

nk nghĩ v,hc tốt

8 tháng 6 2016

Sorry . I am class 7a

xin lỗi, em lớp 6 vừa mới lên lớp 7 thui
26 tháng 7 2016

1a) Để \(\frac{6x+5}{2x+1}\)là số nguyên thì 6x+5 chia hết cho 2x+1

=> (6x+3)+2 chia hết cho 2x+1

=> 2 chia hết cho 2x+1 ( vì 6x+3 chia hết cho 2x+1)

=> 2x+1 thuộc ước của 2={ 1;-1;2;-2}

Với 2x+1=1=> x=0

Với 2x+1=-1=> x=-1

Với 2x+1=...........

Với 2x+1=.......

Vậy x=.............

b) Để \(\frac{3x+9}{x-4}\)là số nguyên thì 3x+9 chia hết cho x-4

=> (3x-12)+21 chia hết x-4

=> 21 chia hết cho x-4 ( vì 3x-12 chia hết cho x-4)

=> x-4 thuộc Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

Với x-4=1=> x=5

Với x-4=-1=> x=3

....

....

....

....

...

Vậy x=......

2) \(\left(x+\frac{1}{2}+x+\frac{1}{3}\right)+\left(2x+\frac{1}{3}+2x+\frac{1}{4}\right)=0\)

=> \(6x+\frac{17}{12}=0\)

=> \(x=\frac{0-\frac{17}{12}}{6}=-\frac{89}{12}\)

7 tháng 8 2016

Đúng rồi

22 tháng 10 2023

\(a,(x-2)^2-25=0\\\Leftrightarrow (x-2)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

\(---\)

\(b,4x(x-2)+x-2=0\\\Leftrightarrow4x(x-2)+(x-2)=0\\\Leftrightarrow(x-2)(4x+1)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{4}\end{matrix}\right.\)

\(---\)

\(c,4x(x-2)-x(3+4x)(?)\)

\(d,(2x-5)^2-3x(5-2x)=0\\\Leftrightarrow(2x-5)^2+3x(2x-5)=0\\\Leftrightarrow(2x-5)(2x-5+3x)=0\\\Leftrightarrow(2x-5)(5x-5)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\5x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=1\end{matrix}\right.\)

\(---\)

\(e,x^2-25-(x+5)=0(sửa.đề)\\\Leftrightarrow(x^2-5^2)-(x+5)=0\\\Leftrightarrow (x-5)(x+5)-(x+5)=0\\\Leftrightarrow(x+5)(x-5-1)=0\\\Leftrightarrow(x+5)(x-6)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)

\(---\)

\(f,5x(x-3)-x+3=0\\\Leftrightarrow5x(x-3)-(x-3)=0\\\Leftrightarrow(x-3)(5x-1)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

\(Toru\)

15 tháng 2 2023

\(\dfrac{2\text{x}-1}{3}=\dfrac{3\text{x}+1}{4}\)

\(\Leftrightarrow=\dfrac{4\left(2\text{x}-1\right)}{12}=\dfrac{3\left(3\text{x}+1\right)}{12}\)

\(\Leftrightarrow8\text{x}-4=9\text{x}+3\)

\(\Leftrightarrow8\text{x}-9\text{x}=3+4\)

\(\Leftrightarrow-x=7\)

\(\Leftrightarrow x=-7\)

15 tháng 2 2023

`(2x-1)/3 = (3x+1)/4`

`=> (2x-1).4= 3.(3x+1)`

`=> 8x -4= 9x+3`

`=> 8x-9x =3+4`

`=> -x=7`

`=>x=-7`

15 tháng 2 2020

Ta có: \(\frac{x+2}{y+10}\)\(=\)\(\frac{1}{5}\)\(\Rightarrow\)\(5\left(x+2\right)=y+10\)(1)

             \(y-3x=2\)\(\Rightarrow\)\(y+2=3x\)                              (2)

Thay (2) vào (1) ta có:

\(5\left(x+2\right)=\left(y+2\right)+8\)

\(5x+10=3x+8\)

\(5x-3x=8-10\)

\(2x=-2\)

\(x=-2:2\)

\(x=-1\)

Vậy: x=-1

Chúc bạn làm bài tốt!

20 tháng 10 2021

a) \(PT\Leftrightarrow x^2-4x+1=3x-5\)

\(\Leftrightarrow x^2-7x+6=0\Leftrightarrow\left(x-1\right)\left(x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=6\end{cases}}\)

b) \(PT\Leftrightarrow x^2\left(2x-3\right)-\left(2x-3\right)=0\Leftrightarrow\left(x^2-1\right)\left(2x-3\right)=0\Leftrightarrow x\in\left\{\pm1;\frac{3}{2}\right\}\)

29 tháng 7 2021

Bài 4: 

a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))

\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3

\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)

\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)

\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)

\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)

\(\Leftrightarrow\) \(2x^2+7x+3=0\)

\(\Delta=7^2-4.2.3=25\)\(\sqrt{\Delta}=5\)

Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:

\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)

Vậy ...

Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được

Bài 5: 

a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)

\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)

\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)

Vậy ...

Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\)\(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!

VD1:

a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)

\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)

\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)

Vậy ...

Phần b tương tự nha

c, \(\sqrt{3}x^2-\sqrt{12}=0\)

\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)

\(\Leftrightarrow\) \(x^2=2\)

\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)

Vậy ...

d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)

\(\Leftrightarrow\) \(x-1=5\)

\(\Leftrightarrow\) \(x=6\)

Vậy ...

VD2: 

Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)

b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))

\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(x^2=3\)

\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)

Vậy ...

c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x^2-4x=0\)

\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)

29 tháng 7 2021

cảm ơn bn nhiều nha