K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

\(C=x^2-2x+2018=\left(x^2-2x+1\right)+2017=\left(x-1\right)^2+2017\ge2017.\)

Dấu "='' xảy ra khi x=1 

31 tháng 8 2018

\(C=x^2-2x+2018=x^2-2x+1+2017=\left(x-1\right)^2+2017\)

Vì: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+2017\ge2017\forall x\)

Vậy Min C = 2017

Dấu = xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

=.= hok tốt!!

2 tháng 10 2023

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

11 tháng 8 2021

C = {x} _576+6967=986=79

11 tháng 8 2021

Có:\(\left|x\right|\ge0\)

\(\Rightarrow\left|x\right|+2017\ge2017\)

\(\Leftrightarrow\frac{\left|x\right|+2017}{2018}\ge\frac{0+2017}{2018}=\frac{2017}{2018}\)

Vậy GTNN của C =2017/2018 khi và chỉ khi x=0

11 tháng 8 2021

2017/2018 nha bạn

11 tháng 8 2021

\(C=|x|+\frac{2017}{2018}\)

vì \(|x|\ge0\forall x\)

\(\Rightarrow|x|+\frac{2017}{2018}\ge\frac{2017}{2018}\forall x\)\(\Rightarrow C\ge\frac{2017}{2018}\)

Dấu "=" xảy ra khi x=0

vậy \(Cmin=\frac{2017}{2018}\Leftrightarrow x=0\)

1 tháng 12 2018

\(A=\frac{-2018}{x^2-10x+2012}\)

ta có:\(x^2-10x+2012=x^2-2.x.5+5^2+1987=\left(x-5\right)^2+1987\ge1987\)vì (x-5)2\(\ge\)0)

dấu = xảy ra khi x-5=0

=> x=5

vì tử thức âm  mà mẫu thức luôn lớn hơn 0

=> E đạt giá trị nhỏ nhất khi mẫu thức nhỏ nhất

khi đó Min A=\(-\frac{2018}{1987}\)đạt tại x=5

\(A=|x-2018|-|x-2019|\ge|x-2018-x-2019|=|-1|=1\)

9 tháng 8 2023

Ta có: 

\(C=\sqrt{-x^2+6x}\) 

Mà: \(\sqrt{-x^2+6x}\ge0\) 

Dấu "=" xảy ra khi:

\(\sqrt{-x^2+6x}=0\)

\(\Leftrightarrow\sqrt{-x\left(x-6\right)}=0\)

\(\Leftrightarrow-x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy: \(C_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

9 tháng 8 2023

\(D=\sqrt{6x-2x^2}\)

Mà: \(\sqrt{6x-2x^2}\ge0\)

Dấu "=" xảy ra khi:

\(\sqrt{6x-2x^2}=0\)

\(\Leftrightarrow\sqrt{2x\left(3-x\right)}=0\)

\(\Leftrightarrow2x\left(3-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy: \(D_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

\(C\ge30\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=-1

27 tháng 11 2022

Bạn có thể trả lời cụ thể hơn Ko

1 tháng 12 2018

\(E=\left|x+11\right|+\left|x+17\right|+\left|2018+x\right|\)

\(\left|x+11\right|+\left|2018+x\right|=\left|-x-11\right|+\left|2018+x\right|\ge\left|-x-11+2018+x\right|=2007\)

dấu = xảy ra khi \(\left(-x-11\right).\left(2018+x\right)\ge0\Rightarrow-2018\le x\le-11\)(1)

\(\left|x+17\right|\ge0\)

dấu = xảy ra khi \(x+17=0\Rightarrow x=-17\)(2)

\(\Rightarrow E\ge2007\)

dấu = xảy ra khi dấu = ở (1) và (2) đồng thời xảy ra

=> x=-17

Vậy Min E=2007 khi x=-17