Tìm số tự nhiên n sao cho:
4n+14\(⋮\)n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
4n2+n+2=4n2+4n-3n-3+5=4n(n+1)-3(n+1)+5=(n+1)(4n-3)+5
Nhận thấy: (n+1)(4n-3) luôn chia hết cho n+1 với mọi n
=> Để 4n2+n+2 chia hết cho n+1 => 5 phải chia hết cho n+1
=> n+1=(1;5) => n=(0,4)
Đáp số: n=(0,4)
\(\Rightarrow2\left(2n-1\right)+17⋮\left(2n-1\right)\\ \Rightarrow17⋮\left(2n-1\right)\\ \Rightarrow2n-1\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\\ \Rightarrow2n\in\left\{0;2;18\right\}\left(n\in N\right)\\ \Rightarrow n\in\left\{0;1;9\right\}\)
a/
\(n+3⋮n-1\)
\(\Leftrightarrow4⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(4\right)=\left\{1;-1;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;2;-3;5\right\}\)
Mà n là stn
\(\Leftrightarrow n\in\left\{0;2;5\right\}\)
b/ \(4n+3⋮2n+1\)
\(\Leftrightarrow2\left(2n+1\right)+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
Mà n là số tự nhiên
=> 2n + 1 là số tự nhiên
=> 2n + 1 = 1
=> 2n = 0
=> n = 0
\(4n+7⋮n+1\)
\(\Rightarrow4n+4+3⋮n+1\)
\(\Rightarrow4\left(n+1\right)+3⋮n+1\)
mà \(4\left(n+1\right)⋮n+1\Rightarrow3⋮n+1\)
\(\Rightarrow N+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Với : \(n+1=1\Rightarrow n=0\left(TM\right)\)
\(n+1=-1\Rightarrow n=-2\left(loại\right)\)
\(n+1=3\Rightarrow n=2\left(TM\right)\)
\(n+1=-3\Rightarrow n=-4\left(loại\right)\)
\(\Rightarrow n\in\left\{0;2\right\}\)
4n+7=(4n+4)+3=4(n+1)+3
Vì 4(n+1) chia hết cho n=1 nên 4n+7 chia hết cho n+1 khi và chỉ khi 3 chia hết cho n+1
=> n+1 thuộc tập hợp ước của 3={1;3}( vì n+1 là só tự nhiên)
=> n=0 hoặc n=2
a/Ta có : 2x+1 và y-5 là ước của 12
12=1.12=2.6=3.4
Vì 2x+1 lẻ => 2x+1 = 1 hoặc 2x+1=3
*2x+1=1 => x= 0 ; y-5 = 12 => x=0 ; y=12
*2x+1=3 => x=1; y-5=4 => x= 1; y= 9
Vậy (x,y) là: (0,17); (1,9)
b/ Ta có :
4n-5 = 2[2n-1] -3
Để 4n-5 chia hết cho 2n-1 => 3 chia hết cho 2n-1
=> 2n-1 = 1 hoặc 3
=> 2n = 2 hoặc 4
=> n= 1 hoặc 2
Vậy n= 1 hoặc 2
\(\left(4n+14\right)⋮\left(n+1\right)\)
\(\Leftrightarrow4\left(n+1\right)+10⋮\left(n+1\right)\)
\(\Leftrightarrow\left(n+1\right)\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
Do \(n\in N\)
\(\Leftrightarrow n\in\left\{0;1;4;9\right\}\)