cho a,b,c là độ dài 3 cạnh của tam giác a< b <c Chứng minh a+b+c < 9bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b,c thuộc N nữa phương tề.
giả sử b và c đều ko chia hết cho 3
=> b^2;c^2 chia 3 dư 1 hoặc dư 2
=> a^2 chia 3 dư 2 hoặc 1 (tương ứng ở trên)
=> a^2 có dạng 3k+2 hoặc 3k+1
xét các k=1;2;3 thì a đều ko thuộc N => vô lý
=> DPCM
làm dc rk thôi, ko làm dc nữa
---kenny cold----
Nguồn:myself
cách 2
b hoặc c chỉ chia hết cho 3 nếu a là bội số của 5 tức là a = 5k với k là số tự nhiên.
Còn trong các trường hợp khác thì không,
thí dụ:
a = 5 thì b = 3 và c =4 vậy b chia hết cho 3.
a = 10 thì b = 6 và c = 8 vậy trong hai số có b chia hết cho 3 tức là b hoặc c chia hết cho 3
cách 3
nếu a, b, c là ba cạnh của một tam giác vuông (a là cạnh huyền) thì b hoặc c chia hết cho 3?
Đề này có vấn đề rồi ví dụ nhé :
Trên hai cạnh của góc vuông xAy đặt AB = AC = 4 .
Tam giác ABC vuông cạnh huyền BC = a
cạnh AC = b, cạnh AB = c cả hai cạnh này đều không chia hết cho 3
Vì a;b;c là độ dài 3 cạnh của 1 tam giác nên \(\hept{\begin{cases}a+b>c\\a+c>b\\b+c>a\end{cases}}\)(bất đẳng thức tam giác)
\(\Rightarrow\frac{c}{a+b}< 1\Rightarrow\frac{c}{a+b}< \frac{2c}{a+b+c}\)
\(\Rightarrow\frac{b}{a+c}< 1\Rightarrow\frac{b}{a+c}< \frac{2b}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}< 1\Rightarrow\frac{a}{b+c}< \frac{2a}{a+b+c}\)
Cộng vế với vế ta được :
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2\)(đpcm)
Lời giải:
Xét hiệu:
$\frac{a}{b+c}-\frac{2a}{a+b+c}=\frac{a^2-ab-ac}{(b+c)(a+b+c)}=\frac{a[a-(b+c)]}{(b+c)(a+b+c)}$
Vì $a,b,c$ là độ dài 3 cạnh trong một tam giác nên $a>0; a-(b+c)<0; b+c>0; a+b+c>0$
$\Rightarrow \frac{a}{b+c}-\frac{2a}{a+b+c}=\frac{a[a-(b+c)]}{(b+c)(a+b+c)}<0$
$\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}$
Hoàn toàn tương tự: $\frac{b}{a+c}< \frac{2b}{a+b+c}; \frac{c}{a+b}< \frac{2c}{a+b+c}$
Cộng theo vế các BĐT trên ta được:
$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2$
Ta có đpcm.
\(\left(a+b+c\right)^2\le\left(2b+c\right)^2\)
Xét hiệu:
\(\left(2b+c\right)^2-9bc=4b^2-5bc+c^2=\left(b-c\right)\left(4b-c\right)\le0\)
Dễ thấy b - c < 0
\(c< a+b\le2b\)
=> 4b - c > 0
Q.E.D dấu "=" xảy ra khi a = b = c