K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2018

Lời giải:

Số học sinh chỉ chơi bóng rổ: \(30-14=16\)

Số học sinh chỉ chơi cầu lông: \(25-14=11\)

Vậy lớp 10A có số học sinh là:

\(16+11+14=41\) (học sinh)

Hoặc có thể dùng công thức:

Gọi A là tập hợp học sinh chơi bóng rổ, B là tập hợp học sinh chơi cầu lông

Khi đó, số học sinh trong lớp là:

\(|S|=|A|+|B|-|A\cap B|=30+25-14=41\) (học sinh)

7 tháng 11 2021

\(\text{Gọi x là số học sinh biết chơi cả hai môn đá cầu và cầu lông. }\)

\(\text{Theo đề, ta có: }\)

\(\text{+Số học sinh chỉ biết chơi mỗi đá cầu là: }25-x\)

\(\text{+Số học sinh chỉ biết chơi mỗi cầu lông là: }20-x\)

\(\text{Vậy, số học sinh biết chơi cả hai môn đá cầu và cầu lông là: }\)
\(25-x+20-x+x=36\Leftrightarrow x=9\left(HS\right)\)
 

16 tháng 10 2021

9

22 tháng 10 2021

Số học sinh biết chơi cả đá cầu và cầu lông là: \(25+20-36=9\left(hs\right)\)

22 tháng 10 2021

Coppy mạng mà ko để í cop bị lỗi sao???

3 tháng 11 2021

Gọi A là tập hợp các học sinh biết chơi đá cầu và B là tập hợp các học sinh biết chơi cầu lông.Kí hiệu n(A), n(B) các tập hợp A, B. Khi đó:

+)n(A∩B) là số học sinh Bích cho cả hai môn thể thao đá cầu vượt cầu lông 

+)n(A ∪ B) là số học sinh biết chơi ít nhất một trong hai môn

Mặt khác từ biểu đồ ven ở trên sẽ thấy

n(A∪B) = n(A)+ n(B)- n(A∩B)

=>n (A∩B)=9

Vậy lúc mới a có 9 học sinh biết chơi cả 2 đá cầu và cầu lông

 

31 tháng 8 2021

Có số bạn thích chơi cả hai môn là:

       ( 16 + 24 ) - 32 = 12 ( bạn)

Đây là qui tắc rồi nhé. Nếu em gặp dạng này thì cứ cộng các số lại với nhau rồi trừ đi cả lớp. Nhớ tick nha. hihi

20 tháng 9 2021

Gọi \(X\) là tập hợp các học sinh trong lớp, \(A,B\) lần lượt là tập hợp các học sinh đăng kí chơi cầu lông và chơi bóng bàn.

Như vậy tập hợp học sinh đăng kí chơi cả hai môn là \(A\cap B\). Tập hợp học sinh đăng kí ít nhất một môn là \(A\cup B\)
Ta có \(N\left(A\cup B\right)=50-10=40\)
\(a,\) Ta có \(N\left(A\cup B\right)=N\left(A\right)+N\left(B\right)-N\left(A\cap B\right)\)
\(\Rightarrow N\left(A\cap B\right)=\left(A\right)+N\left(B\right)-N\left(A\cup B\right)=30+28-40=18\)
Vậy có \(18\) học sinh đăng kí chơi cả hai môn
\(b,\) Số học sinh chỉ đăng kí chơi một môn là
\(N\left(A\cup B\right)-N\left(A\cap B\right)=40-18=22\)