Cho 🔺️ABC có BC =2AB . Gọi M là trung điểm của BC, D là trung điểm của BM. Trên tia đối của DAClaasy E sao cho DE=DA.Gọi I là giao điểm của AC và EM
a) CM ABEI là hình thang
b)cm 🔺️AME=🔺️MAC
c) CEDI là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo
a) Vì tam giác ABc cân nên :
góc B = góc C
Lại vì AE=Ad => tam giác AED cần
=> Góc E = góc D
Ta có:
góc E + góc D+ góc EAD = Góc B + góc C+ góc BAC(=180 độ)
mà góc EAD = góc BAC ( đói đỉnh)
=> góc E + góc D = góc B+ góc C
mặt khác :góc B = góc C , Góc E = góc D
=> Góc E= góc C mà 2 góc này ơ vị trí so le trong nên :ED// BC ( đpcm)
\(\text{Hình bạn tự vẽ nhoa!}\)
\(\text{a)}\Delta ABC\text{ cân tại }A:\)
\(\Rightarrow\widehat{B}=\widehat{C}\)
\(\text{Vì }AD=AE\)
\(\Rightarrow\Delta AED\text{ cân tại A}:\)
\(\Rightarrow\widehat{E}=\widehat{D}\)
\(\text{Ta có:}\widehat{B}+\widehat{C}+\widehat{BAC}=\widehat{E}+\widehat{D}+\widehat{EAD}=180^0\)
\(\text{mà }\widehat{EAD}\text{ và }\widehat{BAC}\text{(đối đỉnh)}\)
\(\Rightarrow\widehat{E}+\widehat{D}=\widehat{B}+\widehat{C}\)
\(\Rightarrow\widehat{E}=\widehat{C}\)
\(\text{mà chúng so le trong}\)
\(\Rightarrow ED=BC\)
\(\text{b)Xét }\Delta EAB\text{ và }\Delta DAC\text{ có:}\)
\(AE=AD\left(gt\right)\)
\(AB=AC\left(cmt\right)\)
\(\widehat{EAB}=\widehat{CAD}\text{(đối đỉnh)}\)
\(\Rightarrow\Delta EAB=\Delta DAC\left(c.g.c\right)\)
\(BE=CD\text{(2 cạnh tương ứng)}\)
\(\text{c)Ta có:}\Delta EAB=\Delta DAC\left(cmt\right)\)
\(\Rightarrow\widehat{AEB}=\widehat{ADC}\)
\(\text{mà }\widehat{AED}=\widehat{ADE}\)
\(\Rightarrow\widehat{AEB}+\widehat{AED}=\widehat{ADC}+\widehat{ADE}\)
\(\text{Xét }\Delta BED\text{ và }\Delta CDE\text{ có:}\)
\(BE=CD\left(cmt\right)\)
\(\widehat{BED}=\widehat{CDE}\left(cmt\right)\)
\(ED\text{ chung}\)
\(\Rightarrow\Delta BED=\Delta CDE\left(c.g.c\right)\)
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: \(\widehat{D}=\widehat{E}\) và AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔBHD=ΔCKE
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: AH=AK
c: Xét ΔADE có AH/AD=AK/AE
DO đó: HK//DE
hay BC//HK
Theo mình có thể đề sai vì không cho một số đo một góc nào cả thì hơi khó
Sửa đề: I là giao của BH và CK
a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
KB=HC
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
=>ΔAIB=ΔAIC
b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
AH=AK
=>ΔAHI=ΔAKI
a: Xét ΔCBD có
CA vừa là trung tuyến, vừa là đường cao
=>ΔCDB cân tại C
b: Xét ΔMDE và ΔMCB có
góc DME=góc CMB
MD=MC
góc MDE=góc MCB
=>ΔMDE=ΔMCB
=>ME=MB và CB=DE
BC+BD=ED+BD>BE
a, \(\Delta ADB=\Delta EDM\left(c.g.c\right)\Rightarrow\widehat{BAD}=\widehat{MED}\) ( 2 góc tương ứng )
\(\Rightarrow AB//EI\)( vì co 2 góc so le trong bằng nhau )
\(\Rightarrow ABEI\)là hình thang
b, \(AB=ME=\frac{1}{2}BC\)
M là trung điểm của BC (gt) nên \(MB=MC=\frac{1}{2}BC\)
\(\Rightarrow AB=MB=MC=ME\)
\(\Rightarrow\Delta AMB\)cân tại B \(\Rightarrow\widehat{BAM}=\widehat{AMD}\) (t/c)
\(AB//EI\left(gt\right)\Rightarrow\widehat{BAM}=\widehat{AMI}\)(SLT)
Ta có: \(\hept{\begin{cases}\widehat{DME}=\widehat{IMC}\\\widehat{AMD}=\widehat{AMI}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\widehat{AME}=\widehat{AMC}\)
\(\Delta AME=\Delta AMC\left(c.g.c\right)\)\(\Rightarrow AE=AC\)( 2 cạnh t/ứ)
c, \(\Delta AEC\)cân tại A \(\Rightarrow\widehat{AEC}=\widehat{ACE}\) hay \(\widehat{DEC}=\widehat{ICE}\) (1)
\(\Delta ABC\)có: M là trung điểm của BC và MI // AB nên I là trung điểm của AC
DI là đường trung bình của \(\Delta AEC\Rightarrow DI//EC\) (2)
Từ (1) và (2) \(\Rightarrow CEDI\)là hình thang cân.
Chúc bạn học tốt.