Tìm x E N , cho biết
a) x < 6
b) x <= 5
c ) 53 < x <= 57
d) 5 <= x <= 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>3x=6
=>x=2
b: =>\(\sqrt{2x+1}\left(\sqrt{2x-1}+1\right)=0\)
=>2x+1=0
=>x=-1/2
c: \(\dfrac{\sqrt{x}-1}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
=>\(\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)\)
=>\(x+\sqrt{x}-6=x-1\)
=>căn x-6=-1
=>căn x=-1+6=5
=>x=25
a, 15 - ( 4 - x ) = 6
⇒ 15 - 4 + x = 6
⇒ 11+ x = 6
⇒ x = -5
c, x - ( 12 - 25 ) = -8
⇒ x + 13 = -8
⇒ x = -21
d, ( x - 29 ) - ( 17 - 38 ) = -9
⇒ x - 29 + 21 = -9
⇒ x - 8 = -9
⇒ x = -1
b, - 30 + ( 25 - x ) = -1
⇒ - 30 + 25 - x = -1
⇒ -5 - x = -1
⇒ x = -4
a, \(15-4+x=6\) ⇒ \(11-x=6\) ⇒ \(x=5\)
b, \(-30+25-x=-1\) ⇒ \(-5-x=-1\) ⇒ \(x=-4\)
c, \(x-12+25=-8\Rightarrow x+13=-8\) ⇒ \(x=-21\)
d, \(x-29-17+38=-9\Rightarrow x-8=-9\Rightarrow x=-1\)
a: y=-3/4x
Khi x=6 thì y=-18/4=-9/2
b: k=-3/4
c: y=-3/4x
1. Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học trực tuyến OLM
3.
\(a,A=n^3-n+7=n\left(n-1\right)\left(n+1\right)+7\)
Có \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số tự nhiên lt với \(n\in N\) nên chia hết cho 6
Mà 7 ko chia hết cho 6 nên A không chia hết cho 6
\(b,B=n^3-n=n\left(n-1\right)\left(n+1\right)\)
Như câu a thì B chia hết cho 6 hay B chia hết cho 3
Ta thấy n lẻ nên \(n=2k+1\left(k\in N\right)\)
\(\Rightarrow B=n^3-n=\left(n-1\right)n\left(n+1\right)\\ =\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)\\ =2k\left(2k+1\right)\left(2k+2\right)\\ =4k\left(k+1\right)\left(2k+1\right)\)
Mà k+1 và 2k+1 là 2 số tự nhiên lt nên chia hết cho 2
\(\Rightarrow B⋮4\cdot2\left(2k+1\right)=8\left(2k+1\right)⋮8\)
Vì B chia hết cho cả 3;8 và \(\left(3;8\right)=1\) nên B chia hết 24
\(c,C=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Ta thấy đây là 4 số tự nhiên lt với \(n\in N\) nên chia hết cho 24
a) -3n + 2 \(⋮\)2n + 1
<=> 2(-3n + 2) \(⋮\)2n + 1
<=> -6n + 4 \(⋮\)2n + 1
<=> -3(2n + 1) + 7 \(⋮\)2n + 1
<=> 7 \(⋮\)2n + 1
<=> 2n + 1 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
2n + 1 | -1 | 1 | -7 | 7 |
n | -1 | 0 | -4 | 3 |
Vậy n = {-1; 0; -4; 3}
b) n2 - 5n +7 \(⋮\)n - 5
<=> n(n - 5) + 7 \(⋮\)n - 5
<=> 7 \(⋮\)n - 5
<=> n - 5 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
n - 5 | -1 | 1 | -7 | 7 |
n | 4 | 6 | -2 | 12 |
Vậy n = {4; 6; -2; 12}
c) (3 - x)(xy + 5) = -1
<=> (3 - x) và (xy + 5) \(\in\)Ư(-1)
Ta có: Ư(-1) \(\in\){-1; 1}
Lập bảng:
3 - x | -1 | 1 |
x | -4 | 2 |
xy + 5 | 1 | -1 |
y | 1 | -3 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-4; 1) và (2; -3)
d) xy - 3x = 5
<=> x(y - 3) = 5
<=> x và y - 3 \(\in\)Ư(5)
Ta có: Ư(5) \(\in\){\(\pm\)1; \(\pm\)5}
Lập bảng:
x | -1 | 1 | -5 | 5 |
y-3 | -5 | 5 | -1 | 1 |
y | -2 | 8 | 2 | 4 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-1; -2); (1; 8); (-5; 2) và (5; 4)
e) xy - 2y + x = -5
<=> y(x - 2) + (x - 2) = -7
<=> (x - 2)(y + 1) = -7
<=> (x - 2) và (y + 1) \(\in\)Ư(-7)
Ta có: Ư(-7) \(\in\){\(\pm\)1; \(\pm\)7}
Lập bảng:
x - 2 | -1 | 1 | -7 | 7 |
x | 1 | 3 | -5 | 9 |
y + 1 | 7 | -7 | 1 | -1 |
y | 6 | -8 | 0 | -2 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (1; 6): (3; -8); (-5; 0) và (9; -2)
a) Ta có: B(x)-M(x)=A(x)
nên M(x)=B(x)-A(x)
\(=x^4-2x^3+5x^2+x+10-x^4-2x^3+5x^2+3x+6\)
\(=-4x^3+10x^2+4x+16\)
a) Tìm \(x\in N\) biết x chia hết cho 25 và 45 và \(300\le x\le500\)
giải:
Theo đề \(\hept{\begin{cases}x⋮25\\x⋮45\end{cases}\Rightarrow x\in BC\left(25;45\right)\Rightarrow x\in B\left(225\right)=\left\{0;225;450;675;...\right\}}\)
Mà \(300\le x\le500\Rightarrow x=450\)
Tìm \(x\in Z\)biết \(\left|x\right|-\left(-15\right)=60\)
Giải:
\(\left|x\right|-\left(-15\right)=60\)
\(\Rightarrow\left|x\right|+15=60\)
\(\Rightarrow\left|x\right|=60-15\)
\(\Rightarrow\left|x\right|=45\)
\(\Leftrightarrow\orbr{\begin{cases}x=45\\x=-45\end{cases}}\)
\(a^2-2a+6b+b^2=-10\\ \Leftrightarrow a^2-2a+1+b^2+6b+9=0\\ \Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-3\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(1;-3\right)\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ \Leftrightarrow xy+yz+zx=0\\ \Rightarrow\left\{{}\begin{matrix}xy+yz=-zx\\xy+zx=-yz\\yz+zx=-xy\end{matrix}\right.\)
Ta có:
\(A=\dfrac{xz+yz}{z^2}+\dfrac{xy+yz}{y^2}+\dfrac{xy+xz}{x^2}\\ =\dfrac{-xy}{z^2}+\dfrac{-xz}{y^2}+\dfrac{-yz}{x^2}\\ =-xyz\cdot\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\\ =-xyz\cdot\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{xz}\right)\\ =0\)
Các bạn nhanh giúp mình .Cảm ơn chân thành
a)X=0,1,2,3,4,5
b)x=0,1,2,3,4,5
c)54,55,56,57
d)ko có số tự nhiên x nào mà lớn hơn hoặc =5 và x bé hơn hoặc bằng 5
K nhé?