Cho A =\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+........+\frac{1}{29}+\frac{1}{30}.\) . Hãy so sánh A với \(\frac{5}{6}\)
Giúp với, cần gấp
Ai trả lời nhanh mik cho 3 tick
PS:Làm cả bài giải luôn nhé!!!!>.<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy : \(\frac{1}{11}>\frac{1}{100},\frac{1}{12}>\frac{1}{100},...,\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}=1\)
Do đó : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>1\)
Ta có: A=1/11+1/12+1/13+...+1/30
=(1/11+1/12+1/13+..+1/20)+(1/21+1/22+1/23+...+1/30)
\(\Rightarrow\)A<(1/10+1/10+1/10+...+1/10)+(1/20+1/20+1/20+...1/20)
\(\Rightarrow\)A<(1/10)*10+(1/20)*10
\(\Rightarrow\)A<1+1/2
\(\Rightarrow\)A<3/2<11/6
A= 1/10+1/11+1/12+1/13+...........+1/99+1/100
2A=1/9+1/10+1/11+1/12+...........+1/98+1/99
2A-A=(1/10+1/11+1/12+1/13+.............+1/99+1/100)-(1/9+1/10+1/11+1/12+............1/98+1/99)
A=1/100-1/9
=>A:1/2=1/1x3+1/3x5+1/5x7+...+1/99x101
=>2a=1/2(2/1x3+2/3x5+...+2/99x101)
từ đây tự làm
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(\Rightarrow2A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(\Rightarrow2A=\frac{1}{2}\left(1-\frac{1}{101}\right)\)
\(\Rightarrow4A=\frac{100}{101}\)
\(\Leftrightarrow A=\frac{100}{101}.\frac{1}{4}=\frac{4.25}{101.4}=25< 26\)
\(\text{A = }\frac{\text{-1}}{\text{2011}}-\frac{\text{3}}{\text{11}^2}-\frac{\text{5}}{\text{11}^2.\text{11}}-\frac{\text{7}}{\text{11}^2.\text{11}^2}=\text{ }\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)\)
\(\text{B = }\frac{\text{-1}}{\text{2011}}-\frac{7}{\text{11}^2}-\frac{5}{\text{11}^2.\text{11}}-\frac{3}{\text{11}^2.\text{11}^2}=\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
\(\text{Vì }3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}< 7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\)
\(\Rightarrow\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)>\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
=> A > B
Vậy A > B
câu b nha
B= 1/100 - (1/2.1 + 1/3.2 + ... + 1/98.97 + 1/99.98 + 1/100.99)
B=1/100 - (1 - 1/2 + 1/2 - 1/3 + 1/3 - ... - 1/99 + 1/99 - 1/100)
B=1/100-(1-1/100)
B=1/100-99/100
B= - 98/100
B= - 49/50
đ ú g nha
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{29}+\frac{1}{30}\)
\(A=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)\)
\(A>\left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)
\(A>10.\frac{1}{20}+10.\frac{1}{30}\)
\(A>\frac{1}{2}+\frac{1}{3}\)
\(A>\frac{5}{6}\)
Vậy \(A>\frac{5}{6}\)
Chúc bạn học tốt ~
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{29}+\frac{1}{30}\)
\(A=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)\)
\(A>\left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)
\(A>\frac{1}{20}\times10+\frac{1}{30}\times10\)
\(A>\frac{1}{2}+\frac{1}{3}\)
\(A>\frac{5}{6}\)
Vậy \(A>\frac{5}{6}\)