chứng minh rằng \(\frac{2\sqrt{mn}}{\sqrt{m}+\sqrt{n}+\sqrt{m+n}}=\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)
Áp dụng tính \(\frac{2\sqrt{10}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) (pp trục căn thức ở mẫu)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng tính: \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(=1-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
Vậy S = 19/20
Có nhầm đề không vậy? Ở tử có n dấu căn, ở mẫu có n-1
dấu căn . giả sử có một biểu thức bất kì: \(\frac{\sqrt{2+\sqrt{2}}}{\sqrt{2}}>1\)
vậy sao chứng minh?
a) \(\left(\sqrt{ab}+2\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}+\frac{1}{\sqrt{ab}}\right).\sqrt{ab}\) (ĐK : \(\hept{\begin{cases}a>0\\b>0\end{cases}}\)hoặc \(\hept{\begin{cases}a< 0\\b< 0\end{cases}}\))
\(=ab+2b-a+1\)
b) \(\left(-\frac{am}{b}\sqrt{\frac{n}{m}}-\frac{ab}{n}.\sqrt{mn}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\) (ĐK bạn tự xét nhé ^^)
\(=\left(-\frac{a\sqrt{mn}}{b}-\frac{ab\sqrt{m}}{\sqrt{n}}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\)
\(=a^2b^2\left(\frac{-an}{b}-ab+\frac{a^2}{b^2}\right)=-a^3bn-a^3b^3+a^4=a^3\left(a-bn-b^3\right)\)
Nhân tử và mẫu của biểu thức với \(\sqrt{m}+\sqrt{n}-\sqrt{m+n}.\)
\(\Rightarrow\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}+\sqrt{m+n}\right)\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}\)
\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}\right)^2-\left(\sqrt{m+n}\right)^2}\)
\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{m+n+2\sqrt{mn}-m-n}=\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)
Ta có: \(\frac{2\sqrt{mn}}{\sqrt{m}+\sqrt{n}+\sqrt{m+n}}=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{(\sqrt{m}+\sqrt{n}+\sqrt{m+n})\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}\)
\(=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}\right)^2-\left(\sqrt{m+n}\right)^2}=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{m+2\sqrt{mn}+n-m-n}\)
\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{2\sqrt{mn}}=\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)( đpcm )
Áp dụng: Với \(m=2\)và \(n=5\)và \(mn=10\); \(m+n=7\)ta có:
\(\frac{2\sqrt{10}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}=\sqrt{2}+\sqrt{5}-\sqrt{2+5}=\sqrt{2}+\sqrt{5}-\sqrt{7}\)