Cho a, b, c, d là 4 số nguyên bất kỳ.
CMR:
\(x=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+c+d}\)
không phải là 1 số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét đề bài , ta thấy :
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
Vậy , \(\frac{a}{b+c+d}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>1\)
mặt khác , ta lại có :
\(\frac{a}{b+c+d}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(=\left(\frac{a}{d+b+c}+\frac{c}{c+d+a}\right)+\left(\frac{b}{b+c+d}+\frac{d}{d+a+b}\right)\)
Mà \(\frac{a}{b+c+d}+\frac{c}{c+d+a}< \frac{a}{a+c}+\frac{c}{c+a}=1\)
\(\frac{b}{b+c+d}+\frac{d}{d+a+c}< \frac{b}{b+d}+\frac{d}{d+b}=1\)
=> \(\frac{a}{b+c+d}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Vậy . . .
Với a,b,c,d là các số nguyên dương ta luôn có :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự : \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
Cộng vế với vế ta được :
\(\frac{a+b+c+d}{a+b+c+d}< S< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}\rightarrow1< S< 2\)
Do đó , S không là số tự nhiên.
M = a/a+b + b/b+c + c/c+a
M > a/a+b+c + b/a+b+c + c/a+b+c
M > a+b+c/a+b+c
M > 1 (1)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
M = a/a+b + b/b+c + c/c+a
M < a+c/a+b+c + b+c/a+b+c + b+c/a+b+c
M < 2.(a+b+c)/a+b+c
M < 2 (2)
Từ (1) và (2) => 1 < M < 2, không là số nguyên ( đpcm)
*Ta có :
a/a+b > a/a+b+c (1)
b/b+c > b/a+b+c (2)
c/c+a > c/a+b+c (3)
Từ (1); (2) và (3) suy ra:
a/a+b + b/b+c + c/c+a > a/a+b+c + b/a+b+c + c/a+b+c = a+b+c/a+b+c = 1 (a)
*Ta có công thức:
- Với a; b và c thuộc N* ta có thể rút ra:
a/b < a+c/b+c
Áp dụng công thức trên, ta có:
a/a+b < a+c/a+b+c (4)
b/b+c < b+a/a+b+c (5)
c/c+a < c+b/a+b+c (6)
Từ (4); (5) và (6) suy ra:
a/a+b + b/b+c + c/c+a < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = a+c+b+a+c+b/a+b+c = 2a+2b+2c/a+b+c = 2(a+b+c)/a+b+c = 2 (b)
Từ (a) và (b) suy ra:
1 < a/a+b + b/b+c + c/c+a < 2
=> 1 < M < 2
=> M không phải là số nguyên.
Vậy M không phải là số nguyên.
Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\)
\(>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(=\frac{a+b+c+d}{a+b+c+d}=1\)
Tương tự ta cũng chứng minh được \(\frac{b}{a+b}+\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}>1\)
mà \(\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\right)+\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}\right)\)
\(=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}=4\)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\)là số nguyên
do đó \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)
\(\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\)(vì \(a\ne c\))
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac=bd\)(vì \(b\ne d\))
Khi đó \(abcd=ac.ac=\left(ac\right)^2\)là số chính phương.
dưới mẫu:1997x-1997=1997x(x-1)
để a lớn nhất thì mẫu nhỏ nhất,mà x >hoặc =1(loại trg hợp x=1 đi vì mẫu =0) vậy x=2
Vậy min a =3993/1997
ban vào link này nhé
https://olm.vn/hoi-dap/question/109536.html