làm hộ bài*nhanh...nhanh*sẽ dc like nha
2n+1chia hết cho n-1
Tìm n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 \(⋮\)2n+1
=> 2n+1 \(\in\)Ư(10) ={ 1;2; 5; 10}
Vì 2n+1 là số lẻ nên 2n+1 \(\in\){ 1; 5}
=> 2n \(\in\){ 0; 4}
=> n \(\in\){ 0; 2}
Vậy...
b) 3n +1 \(⋮\)n-2
=> n-2 \(⋮\)n-2
=> (3n+1) -(n-2) \(⋮\)n-2
=> (3n-1) -3(n-2) \(⋮\)n-2
=> 3n-1 - 3n + 6 \(⋮\)n-2
=> 5\(⋮\)n-2
=> n-2 thuốc Ư(5) ={ 1;5}
=> n thuộc { 3; 7}
Vậy...
a) Vì n thuộc Z => 2n-1 thuộc Z
=> 2n-1 thuộc Ư (10)={-10;-5;-2;-1;1;2;5;10}
Ta có bảng giá trị
2n-1 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
2n | -9 | -4 | -1 | 0 | 2 | 3 | 6 | 11 |
n | \(\frac{-9}{2}\) | -2 | \(\frac{-1}{2}\) | 0 | 1 | \(\frac{3}{2}\) | 3 | \(\frac{11}{2}\) |
Vậy n={-2;0;3}
b) Ta có 3n+1=3(n-2)+7
Để 3n+1 chia hết cho n-2 thì 3(n-2)+7 chia hết cho n-2
Vì 3(n-2) chia hết cho n-2 => 7 chia hết cho n-2
n thuộc Z => n-2 thuộc Z
=> n-2 thuộc Ư (7)={-1;-7;1;7}
Ta có bảng
n-2 | -1 | -7 | 1 | 7 |
n | 1 | -5 | 3 | 9 |
Vậy n={1;-5;3;9}
a.Theo đầu bài ,ta có:
18n + 3 chia hết cho 7.
Biến đổi: 18n + 3 = 18n + 3n - 3n + 3
= 21n - 3(n - 1) chia hết cho 7.
Vì 21n chia hết cho 7
=> 3(n - 1) chia hết cho 7
Vì 3 không chia hết cho 7
=> n - 1 chia hết cho 7
Đặt k là số lần n - 1 chia hết cho 7
=> ( n - 1 ) : 7 = k
n - 1 = 7k
n = 7k + 1
Nếu k = 0 => n = 1
Nếu k = 1 => n = 8
Nếu k = 2 => n = 15
......
b. 4n - 5 chia hết 13
4n - 5 + 13 chia hết 13
4n + 8 chia hết 13
4(n + 2) chia hết 13.
dãy số trên có số số hạng là:
(1000 - 1) : 1 + 1 = 1000 (số)
tổng của dãy số đó là:
(1000 + 1) x 1000 : 2 = 500500
đáp số: 500500 nhé bạn
Để phân số B là số tự nhiên thì 5n+17 chia hết cho n - 2
5n + 17 = 5n-10+27 = 5(n-2) +27
Vì 5(n-2) chia hết cho n- 2 nên 27 chia hết cho n-2
Hay n - 2 \(\in\)Ư(27)
n - 2 = { 1,3,9,27,}
n = 3 ; 5 ; 11 ; 29
Ta có n.(n+1)(n+2) là tích 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 3
Với n hoặc n+2 chia hết cho 3 thì n.(n+2)(n+7) sẽ chia hết cho 3
Với n+1 chia hết cho 3 thì n+1+6 chia hết cho 3 ( vì 6 chia hết cho 3 )
nên n+7 chia hết cho 3 suy ra n.(n+2)(n+7) sẽ chia hết cho 3
Vậy n.(n+2)(n+7 chia hết cho 3 với mọi n
2n+1 chia hết cho n-1
=> 2n-2+3 chia hết cho n-1
Vì 2n-2 chia hết cho n-1
=> 3 chia hết cho n-1
=> n-1 thuộc Ư(3)
=> n-1 thuộc {1; -1; 3; -3}
=> n thuộc {2; 0; 4; -2}