Tìm các giá trị nguyên của x để thương có giá trị nguyên.
a ) ( 3x3 + 13x2 - 7x + 5 ) : ( 3x - 2 )
b) ( 2x5 + 4x4 - 7x3 - 44 ) : ( 2x2 - 7 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x + 2x2 - 3x3 + 4x4 - 5 < 2x2 - 3x3 + 4x4 - 6
⇔ x < 2x2 - 3x3 + 4x4 - 6 - 2x2 + 3x3 - 4x4 + 5 (chuyển vế - đổi dấu)
⇔ x < -1 (*)
Vì -2 < -1 nên -2 là nghiệm của bất phương trình
Vậy x = -2 là nghiệm của bất phương trình.
b) (-0,001)x > 0,003
⇔ x < -3 (chia cả hai vế cho -0,001)
Vì -2 > -3 nên -2 không phải nghiệm của bất phương trình
Vậy x = -2 không là nghiệm của bất phương trình.
a: \(\Leftrightarrow3x^3-2x^2+15x^2-10x+3x-2+7⋮3x-2\)
\(\Leftrightarrow3x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1\right\}\)
b: \(\Leftrightarrow2x^5-7x^3+4x^4-14x^2+14x^2-49x+49x-44⋮2x^2-7\)
\(\Leftrightarrow2401x^2-1936⋮2x^2-7\)
\(\Leftrightarrow4802x^2-3872⋮2x^2-7\)
\(\Leftrightarrow2x^2-7\inƯ\left(12935\right)\)
\(\Leftrightarrow2x^2-7\in\left\{1;5;13;65;199;995;2587;12935;-1;-5\right\}\)
\(\Leftrightarrow2x^2\in\left\{8;72;2\right\}\)
hay \(x\in\left\{2;-2;6;-6;1;-1\right\}\)
Để thương có giá trị nguyên thì:
\(3x^3+13x^2-7x+5⋮3x-2\)
\(\Rightarrow x^2\left(3x-2\right)+5x\left(3x-2\right)+3x-2+7⋮3x-2\)
\(\Rightarrow7⋮3x-2\)
\(\Rightarrow3x-2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x\in\left\{-\frac{5}{3};\frac{1}{3};1;3\right\}\)
Mà \(x\in Z\Rightarrow x\in\left\{1;3\right\}\)
Bài 1:
a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)
\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)
Ta có \(3x^3+13x^2-7x+5\)
= \(3x^3-2x^2+15x^2-10x+3x-2+7\)
= \(x^2\left(3x-2\right)+5x\left(3x-2\right)+\left(3x-2\right)+7\)
= \(\left(3x-2\right)\left(x^2+5x+1\right)+7\)
=> biểu thức ban đầu = \(x^2+5x+1+\frac{7}{3x-2}\)
Vì x nguyên nên x2 + 5x +1 nguyên
=> Để biểu thức nguyên thì 3x - 2 phải là ước của 7
Sau đó bạn tự giải tiếp nhé
Chúc bạn làm bài tốt
`@` `\text {Ans}`
`\downarrow`
`a)`
Thu gọn:
`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)
`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`
`= -x^5 + 5x^4 + 2x^2 + 2x - 4`
`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)
`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`
`= x^5 - x^4 - x^3 - x^2 + 7x - 2`
`@` Tổng:
`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)
`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`
`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`
`= 4x^4 - x^3 + x^2 + 9x - 6`
`@` Hiệu:
`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)
`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`
`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`
`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`
`b)`
`@` Thu gọn:
\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)
`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`
`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`
`= x^4 - 2x^3 - x^2 + 15x + 10`
\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)
`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`
`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`
`= x^4 + 3x^3 + 2x - 4`
`@` Tổng:
`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)
`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`
`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`
`= 2x^4 + x^3 - x^2 + 17x + 6`
`@` Hiệu:
`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)
`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`
`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`
`= -5x^3 - x^2 + 13x + 14`
`@` `\text {# Kaizuu lv u.}`
a) Ta thực hiện phép chia \(3x^3+13x^2-7x+5\) cho \(3x-2\). Khi đó ta có:
\(A=\frac{3x^3+13x^2-7x+5}{3x-2}=3x^2+5x+1+\frac{7}{3x-2}\)
Nếu x nguyên thì \(3x^2+5x+1\in\text{Z}\) nên để A nguyên thì \(\frac{7}{3x-2}\in Z\)
\(\Rightarrow3x-2\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x\in\left\{1;3\right\}\)
b) Ta có: \(B=\frac{2x^5+4x^4-7x^3-44}{2x^2-7}=\left(x^3+2x^2+7\right)+\frac{5}{2x^2-7}\)
Để B nguyên thì \(\frac{5}{2x^2-7}\in Z\Rightarrow2x^2-7\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-1;1;2;-2\right\}\)