bài 1 :CM các đẳng thức sau :
a) (a+b+c)^2 + a^2 +b^2 +c^2 =(a+b)^2 +(b+c)^2 + (c+a)^2
b) a^4 + b^4 +(a+b)^4 =2(a^2 + ab +b^2)^2
c) (a^2 +b^2 )(x^2 + y^2) = (ax - by)^2 + (ax + by)^2
mk đang cần cực gấp,mong các bạn giúp mk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 2a+2b+2c=by+cz+ax+cz+ax+by
suy ra: 2(a+b+c)=2(ax+by+cz)
a+b+c=ax+by+cz
a+b+c=ax+2a(vì by+cz=2a)
a+b+c=a(x+2)
1/x+2=a/a+b+c
Tương tự: 1/y+2=b/a+b+c
1/z+2=c/a+b+c
suy ra: M=a/(a+b+c)+b/(a+b+c)+c/(a+b+c)=(a+b+c)/(a+b+c)=1
Tiện tay chém trước vài bài dễ.
Bài 1:
\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)
Bài 2:
1) Thấy nó sao sao nên để tối nghĩ luôn
2)
c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi a = 0; b = 1
Với điều kiện \(ab+bc+ca+abc=4\) thì \(VP-VT=\frac{bc^2\left(a-b\right)^2+ca^2\left(b-c\right)^2+ab^2\left(c-a\right)^2}{\left(a^2+2b\right)\left(b^2+2c\right)\left(c^2+2a\right)}\ge0\)
Hì hì, thật ra thì mình không biết giúp thằng bạn mình như thế nào nên đành tự đăng câu hỏi vậy :))