CMR (x2014 + x2012 +1) chia hết cho (x2 + x + 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=1+x+x^2+x^3+..........+x^{2012}\)
+)Thay x=1 vào biểu thức đc:
\(A=1+1+1^2+1^3+..............+1^{2012}\)
Có 2013 số hạng
\(\Rightarrow A=1.2013=2013\)
b)\(B=1-x+x^2-x^3+..............-x^{2011}\)
\(\Rightarrow B=\left(1-x\right)+\left(x^2-x^3\right)+............+\left(x^{2010}-x^{2011}\right)\)
+)Thay x=1 vào biểu thức được:
\(B=\left(1-1\right)+\left(1^2-1^3\right)+...........+\left(1^{2010}-1^{2011}\right)\)
\(\Rightarrow B=0+0+......................+0=0\)
+)\(C=A+B\Rightarrow C=2013+0\Rightarrow C=2013\)
Vậy C=2013
Chúc bn học tốt
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
Ta có: \(Q\left(x\right)=P\left(x\right)-H\left(x\right)\)
\(\Leftrightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(\Leftrightarrow H\left(x\right)=1+x+2x^2+...+2015x^{2015}-x^{2015}-x^{2014}-...-x^2-x-1\)
\(\Leftrightarrow H\left(x\right)=2014x^{2015}+2013x^{2014}+2012x^{2013}+...+x^2\)
Lời giảiL
$A=1+x+x^2+...+x^n$
$xA=x+x^2+x^3+...+x^n+x^{n+1}$
$\Rightarrow xA-A=(x+x^2+x^3+...+x^{n+1})-(1+x+x^2+...+x^n)$
Hay $A(x-1)=x^{n+1}-1$
$\Rightarrow A=\frac{x^{n+1}-1}{x-1}$ với $x$ nguyên dương khác $1$
Vì $A$ nguyên với mọi $x$ nguyên dương, $n$ tự nhiên nên $\frac{x^{n+1}-1}{x-1}$ nguyên
$\Rightarrow x^{n+1}-1\vdots x-1$ (đpcm)
X1=X3=X5---------=X2013 X2=X4=X6=--------=X2012 x1+x2+...+x2013=X1+X3+X5+-----+X2013+X2+X4+X6+------+X2012 =1007X1+1006X2=1006(X1+X2)+X1=1006+X1=2013 所以X1=1007 X2=1006 即 X1=X3=X5---------=X2013=1007 X2=X4=X6=--------=X2012=1006
Ta có \(x^{2014}+x^{2012}+1=x^{2014}-x+x^{2012}-x^2+x^2+x+1\)
=\(x\left(x^{2013}-1\right)+x^2\left(x^{2010}-1\right)+x^2+x+1=x\left(x^3-1\right)\left(...\right)+x^2\left(x^3-1\right)\left(...\right)+x^2+x+1\)
=\(\left(x^2+x+1\right)\left(...\right)\RightarrowĐPCM\)