Cho p là số nguyên tố > 3 Chứng minh rằng ( p2 - 1 ) chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:
A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.
kTa có: p = 3k + 1 hoặc 3k – 1 (h nguyên và k > 1) suy ra A chia hết cho 3.
Vậy A = (p – 1)(p + 1) chia hết cho 24
http://olm.vn/hoi-dap/question/18848.html
Bạn vào đây tham khảo nhé !
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
Ta thấy : Tich của 3 số tự nhiên liên tiếp là 1 số chia hết cho 3
Vì p-1 ; p ; p+1 là 3 số tự nhiên Liên tiếp
=> Trong 3 số trên luôn có 1 số chia hết cho 3
=> (p-1)(p+1) chia hết cho 3. (1)
Vì p là số nguyên tố >3 => p là số lẻ
=> p-1 và p+1 là 2 số chẵn Liên tiếp
Mà tích của 2 số chămn Liên tiếp luôn chia hết cho 8
=> (p-1)(p+1) chia hết cho 8. (2)
Mà (3,8)=1
Từ (1) và (2) => (p-1)(p+1) chia hết cho (3.8)
=> (p-1)(p+1) chia hết cho 24 (đpcm)
Ta thấy: a2-1=(a-1).(a+1)
Vì p là số nguyên tố lớn hơn 3
=>p=2k+1
=>(a-1).(a+1)=(2k+1-1).(2k+1+1)=2k.(2k+2)
=2k.2.(k+1)
=4.k.(k+1)
Vì k và k+1 là 2 số tự nhiên liên tiếp
=>k.(k+1) chia hết cho 2
=>4.(k).(k+1) chia hết cho 8
=>a2-1 chia hết cho 8(1)
Lại có:
Vì a là số nguyên tố lớn hơn 3
=>a không chia hết cho 3
=>a2 chia 3 dư 1
=>a2-1 chia hết cho 3(2)
Từ (1) và (2) ta thây:
a2-1 chia hết cho 8 và 3
mà (8,3)=1
=>a2-1 chia hết cho 8.3
=>a2-1 chia hết cho 24
Vậy a2-1 chia hết cho 24
k cho mk nha\\\^-^
a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3
Tương tự, ta được q2-1 chia hết cho 3
Suy ra: p2-q2 chia hết cho 3(1)
Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8
Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8
Suy ra :p2-q2 chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24
Nếu p > 3 thì ta thử 5
Ta có:
( 52 - 1 ) = 25 - 1 = 24 chia hết cho 24
Đó là VD điiển hình