K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2018

\(x^3+2x^2+x\)

\(=x\left(x^2+2x+1\right)\)

\(=x\left(x+1\right)^2\)

\(4\left(x^2y^2+z^2t^2+2xyzt\right)-\left(x^2+y^2-z^2-t^2\right)^2\)

\(=\left(2xy-2tz\right)^2-\left(x^2+y^2-z^2-t^2\right)\)

\(=\left(2xy-2tz-x^2-y^2+z^2+t^2\right)\left(2xy-2tz+x^2+y^2-z^2-t^2\right)\)

\(=\left[-\left(x-y\right)^2+\left(z-t\right)^2\right]\left[\left(x+y\right)^2-\left(t+z\right)^2\right]\)

\(=-\left(x-y-z+t\right)\left(x-y+z-t\right)\left(x+y-t-z\right)\left(x+y+t+z\right)\)

12 tháng 9 2021

4(x2y2+z2t2+2xyzt)−(x2+y2−z2−t2)24(x2y2+z2t2+2xyzt)−(x2+y2−z2−t2)2

=[2(xy+zt)]2−(x2+y2−z2−t2)2=[2(xy+zt)]2−(x2+y2−z2−t2)2

=(2xy+2zt)2−(x2+y2−z2−t2)2=(2xy+2zt)2−(x2+y2−z2−t2)2

=(2xy+2zt−x2−y2+z2+t2)(2xy+2zt+x2+y2−z2−t2)2

4 tháng 9 2021

\(2x^2+x-6\)

\(=2x^2-3x+4x-6\)

\(=x\left(2x-3\right)+2\left(2x-3\right)\)

\(=\left(2x-3\right)\left(x+2\right)\)

Tham Khảo

NV
1 tháng 9 2021

\(=\left(x^6+2x^5+x^4\right)-2\left(x^5+2x^4+x^3\right)+2\left(x^4+2x^3+x^2\right)\)

\(=x^2\left(x^2+x\right)^2-2x\left(x^2+x\right)^2+2\left(x^2+x\right)^2\)

\(=\left(x^2+x\right)^2\left(x^2-2x+2\right)\)

\(=x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)

1 tháng 9 2021

good teacher

NV
1 tháng 9 2021

\(=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+1\right)\left(x^2+x+1\right)\)

\(x^4+x^3+2x^2+x+1\)

\(=x^4+x^3+x^2+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^2+1\right)\)

\(3x^6-4x^5+2x^4-8x^3+2x^2-4x+3\)

\(=3x^6+3x^4-4x^5-4x^3-x^4-x^2-4x^3-4x+3x^2+3\)

\(=\left(x^2+1\right)\left(3x^4-4x^3-x^2-4x+3\right)\)

\(=\left(x^2+1\right)\left(x^2+x+1\right)\left(3x^2-7x+3\right)\)

4 tháng 9 2021

\(=\left(x^2+5x+8\right)\left(x^2+4x+2x+8\right)=\left(x^2+5x+8\right)\left[x\left(x+4\right)+2\left(x+4\right)\right]\)

\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\) 

4 tháng 9 2021

\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)

\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)

\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)

\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)

4 tháng 9 2021

\(\left(x^2+6x-1\right)^2+2x^2+x^4+2\left(x^2+6x-1\right)\left(x^2+1\right)\)

\(\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+\left(x^2+1\right)^2-1=\left(x^2+6x-1+x^2+1\right)^2-1=\left(2x^2+6x\right)^2-1=\left(2x^2+6x-1\right)\left(2x^2+6x+1\right)\)

\(\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+x^4+2x^2\)

\(=\left(x^2+6x-1\right)\left(x^2+6x-1+2x^2+2\right)+x^4+2x^2\)

\(=\left(x^2+6x-1\right)\left(3x^2+6x+1\right)+x^4+2x^2\)

\(=\left(2x^2+6x-1\right)\left(2x^2+6x+1\right)\)

30 tháng 7 2018

\(x^2+11x+24=x^2+3x+8x+24\)

                              \(=x\left(x+3\right)+8\left(x+3\right)\)

                               \(=\left(x+3\right)\left(x+8\right)\)

30 tháng 7 2018

\(x^2+11x+24=\left(x^2+8x\right)+\left(3x+24\right)\)

                                  \(=x\left(x+8\right)+3\left(x+8\right)\)

                                   \(=\left(x+3\right)\left(x+8\right)\)